Description: Lemma 5 for isomuspgrlem2 . (Contributed by AV, 1-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomushgr.v | |- V = ( Vtx ` A ) |
|
isomushgr.w | |- W = ( Vtx ` B ) |
||
isomushgr.e | |- E = ( Edg ` A ) |
||
isomushgr.k | |- K = ( Edg ` B ) |
||
isomuspgrlem2.g | |- G = ( x e. E |-> ( F " x ) ) |
||
isomuspgrlem2.a | |- ( ph -> A e. USPGraph ) |
||
isomuspgrlem2.f | |- ( ph -> F : V -1-1-onto-> W ) |
||
isomuspgrlem2.i | |- ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) ) |
||
isomuspgrlem2.x | |- ( ph -> F e. X ) |
||
isomuspgrlem2.b | |- ( ph -> B e. USPGraph ) |
||
Assertion | isomuspgrlem2e | |- ( ph -> G : E -1-1-onto-> K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.v | |- V = ( Vtx ` A ) |
|
2 | isomushgr.w | |- W = ( Vtx ` B ) |
|
3 | isomushgr.e | |- E = ( Edg ` A ) |
|
4 | isomushgr.k | |- K = ( Edg ` B ) |
|
5 | isomuspgrlem2.g | |- G = ( x e. E |-> ( F " x ) ) |
|
6 | isomuspgrlem2.a | |- ( ph -> A e. USPGraph ) |
|
7 | isomuspgrlem2.f | |- ( ph -> F : V -1-1-onto-> W ) |
|
8 | isomuspgrlem2.i | |- ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) ) |
|
9 | isomuspgrlem2.x | |- ( ph -> F e. X ) |
|
10 | isomuspgrlem2.b | |- ( ph -> B e. USPGraph ) |
|
11 | 1 2 3 4 5 6 7 8 9 | isomuspgrlem2c | |- ( ph -> G : E -1-1-> K ) |
12 | 1 2 3 4 5 6 7 8 9 10 | isomuspgrlem2d | |- ( ph -> G : E -onto-> K ) |
13 | df-f1o | |- ( G : E -1-1-onto-> K <-> ( G : E -1-1-> K /\ G : E -onto-> K ) ) |
|
14 | 11 12 13 | sylanbrc | |- ( ph -> G : E -1-1-onto-> K ) |