Metamath Proof Explorer


Theorem isomuspgrlem2e

Description: Lemma 5 for isomuspgrlem2 . (Contributed by AV, 1-Dec-2022)

Ref Expression
Hypotheses isomushgr.v
|- V = ( Vtx ` A )
isomushgr.w
|- W = ( Vtx ` B )
isomushgr.e
|- E = ( Edg ` A )
isomushgr.k
|- K = ( Edg ` B )
isomuspgrlem2.g
|- G = ( x e. E |-> ( F " x ) )
isomuspgrlem2.a
|- ( ph -> A e. USPGraph )
isomuspgrlem2.f
|- ( ph -> F : V -1-1-onto-> W )
isomuspgrlem2.i
|- ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) )
isomuspgrlem2.x
|- ( ph -> F e. X )
isomuspgrlem2.b
|- ( ph -> B e. USPGraph )
Assertion isomuspgrlem2e
|- ( ph -> G : E -1-1-onto-> K )

Proof

Step Hyp Ref Expression
1 isomushgr.v
 |-  V = ( Vtx ` A )
2 isomushgr.w
 |-  W = ( Vtx ` B )
3 isomushgr.e
 |-  E = ( Edg ` A )
4 isomushgr.k
 |-  K = ( Edg ` B )
5 isomuspgrlem2.g
 |-  G = ( x e. E |-> ( F " x ) )
6 isomuspgrlem2.a
 |-  ( ph -> A e. USPGraph )
7 isomuspgrlem2.f
 |-  ( ph -> F : V -1-1-onto-> W )
8 isomuspgrlem2.i
 |-  ( ph -> A. a e. V A. b e. V ( { a , b } e. E <-> { ( F ` a ) , ( F ` b ) } e. K ) )
9 isomuspgrlem2.x
 |-  ( ph -> F e. X )
10 isomuspgrlem2.b
 |-  ( ph -> B e. USPGraph )
11 1 2 3 4 5 6 7 8 9 isomuspgrlem2c
 |-  ( ph -> G : E -1-1-> K )
12 1 2 3 4 5 6 7 8 9 10 isomuspgrlem2d
 |-  ( ph -> G : E -onto-> K )
13 df-f1o
 |-  ( G : E -1-1-onto-> K <-> ( G : E -1-1-> K /\ G : E -onto-> K ) )
14 11 12 13 sylanbrc
 |-  ( ph -> G : E -1-1-onto-> K )