Metamath Proof Explorer


Theorem isomuspgrlem2c

Description: Lemma 3 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V = Vtx A
isomushgr.w W = Vtx B
isomushgr.e E = Edg A
isomushgr.k K = Edg B
isomuspgrlem2.g G = x E F x
isomuspgrlem2.a φ A USHGraph
isomuspgrlem2.f φ F : V 1-1 onto W
isomuspgrlem2.i φ a V b V a b E F a F b K
isomuspgrlem2.x φ F X
Assertion isomuspgrlem2c φ G : E 1-1 K

Proof

Step Hyp Ref Expression
1 isomushgr.v V = Vtx A
2 isomushgr.w W = Vtx B
3 isomushgr.e E = Edg A
4 isomushgr.k K = Edg B
5 isomuspgrlem2.g G = x E F x
6 isomuspgrlem2.a φ A USHGraph
7 isomuspgrlem2.f φ F : V 1-1 onto W
8 isomuspgrlem2.i φ a V b V a b E F a F b K
9 isomuspgrlem2.x φ F X
10 1 2 3 4 5 6 7 8 isomuspgrlem2b φ G : E K
11 1 2 3 4 5 isomuspgrlem2a F X e E F e = G e
12 9 11 syl φ e E F e = G e
13 imaeq2 e = c F e = F c
14 fveq2 e = c G e = G c
15 13 14 eqeq12d e = c F e = G e F c = G c
16 15 rspcv c E e E F e = G e F c = G c
17 16 ad2antrl φ c E d E e E F e = G e F c = G c
18 17 imp φ c E d E e E F e = G e F c = G c
19 18 eqcomd φ c E d E e E F e = G e G c = F c
20 imaeq2 e = d F e = F d
21 fveq2 e = d G e = G d
22 20 21 eqeq12d e = d F e = G e F d = G d
23 22 rspcv d E e E F e = G e F d = G d
24 23 ad2antll φ c E d E e E F e = G e F d = G d
25 24 imp φ c E d E e E F e = G e F d = G d
26 25 eqcomd φ c E d E e E F e = G e G d = F d
27 19 26 eqeq12d φ c E d E e E F e = G e G c = G d F c = F d
28 12 27 mpidan φ c E d E G c = G d F c = F d
29 f1of1 F : V 1-1 onto W F : V 1-1 W
30 7 29 syl φ F : V 1-1 W
31 uspgrupgr A USHGraph A UPGraph
32 upgruhgr A UPGraph A UHGraph
33 3 eleq2i c E c Edg A
34 edguhgr A UHGraph c Edg A c 𝒫 Vtx A
35 elpwi c 𝒫 Vtx A c Vtx A
36 35 1 sseqtrrdi c 𝒫 Vtx A c V
37 34 36 syl A UHGraph c Edg A c V
38 37 ex A UHGraph c Edg A c V
39 33 38 syl5bi A UHGraph c E c V
40 3 eleq2i d E d Edg A
41 edguhgr A UHGraph d Edg A d 𝒫 Vtx A
42 elpwi d 𝒫 Vtx A d Vtx A
43 42 1 sseqtrrdi d 𝒫 Vtx A d V
44 41 43 syl A UHGraph d Edg A d V
45 44 ex A UHGraph d Edg A d V
46 40 45 syl5bi A UHGraph d E d V
47 39 46 anim12d A UHGraph c E d E c V d V
48 32 47 syl A UPGraph c E d E c V d V
49 6 31 48 3syl φ c E d E c V d V
50 49 imp φ c E d E c V d V
51 f1imaeq F : V 1-1 W c V d V F c = F d c = d
52 30 50 51 syl2an2r φ c E d E F c = F d c = d
53 52 biimpd φ c E d E F c = F d c = d
54 28 53 sylbid φ c E d E G c = G d c = d
55 54 ralrimivva φ c E d E G c = G d c = d
56 dff13 G : E 1-1 K G : E K c E d E G c = G d c = d
57 10 55 56 sylanbrc φ G : E 1-1 K