Metamath Proof Explorer


Theorem isomuspgrlem2c

Description: Lemma 3 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V=VtxA
isomushgr.w W=VtxB
isomushgr.e E=EdgA
isomushgr.k K=EdgB
isomuspgrlem2.g G=xEFx
isomuspgrlem2.a φAUSHGraph
isomuspgrlem2.f φF:V1-1 ontoW
isomuspgrlem2.i φaVbVabEFaFbK
isomuspgrlem2.x φFX
Assertion isomuspgrlem2c φG:E1-1K

Proof

Step Hyp Ref Expression
1 isomushgr.v V=VtxA
2 isomushgr.w W=VtxB
3 isomushgr.e E=EdgA
4 isomushgr.k K=EdgB
5 isomuspgrlem2.g G=xEFx
6 isomuspgrlem2.a φAUSHGraph
7 isomuspgrlem2.f φF:V1-1 ontoW
8 isomuspgrlem2.i φaVbVabEFaFbK
9 isomuspgrlem2.x φFX
10 1 2 3 4 5 6 7 8 isomuspgrlem2b φG:EK
11 1 2 3 4 5 isomuspgrlem2a FXeEFe=Ge
12 9 11 syl φeEFe=Ge
13 imaeq2 e=cFe=Fc
14 fveq2 e=cGe=Gc
15 13 14 eqeq12d e=cFe=GeFc=Gc
16 15 rspcv cEeEFe=GeFc=Gc
17 16 ad2antrl φcEdEeEFe=GeFc=Gc
18 17 imp φcEdEeEFe=GeFc=Gc
19 18 eqcomd φcEdEeEFe=GeGc=Fc
20 imaeq2 e=dFe=Fd
21 fveq2 e=dGe=Gd
22 20 21 eqeq12d e=dFe=GeFd=Gd
23 22 rspcv dEeEFe=GeFd=Gd
24 23 ad2antll φcEdEeEFe=GeFd=Gd
25 24 imp φcEdEeEFe=GeFd=Gd
26 25 eqcomd φcEdEeEFe=GeGd=Fd
27 19 26 eqeq12d φcEdEeEFe=GeGc=GdFc=Fd
28 12 27 mpidan φcEdEGc=GdFc=Fd
29 f1of1 F:V1-1 ontoWF:V1-1W
30 7 29 syl φF:V1-1W
31 uspgrupgr AUSHGraphAUPGraph
32 upgruhgr AUPGraphAUHGraph
33 3 eleq2i cEcEdgA
34 edguhgr AUHGraphcEdgAc𝒫VtxA
35 elpwi c𝒫VtxAcVtxA
36 35 1 sseqtrrdi c𝒫VtxAcV
37 34 36 syl AUHGraphcEdgAcV
38 37 ex AUHGraphcEdgAcV
39 33 38 biimtrid AUHGraphcEcV
40 3 eleq2i dEdEdgA
41 edguhgr AUHGraphdEdgAd𝒫VtxA
42 elpwi d𝒫VtxAdVtxA
43 42 1 sseqtrrdi d𝒫VtxAdV
44 41 43 syl AUHGraphdEdgAdV
45 44 ex AUHGraphdEdgAdV
46 40 45 biimtrid AUHGraphdEdV
47 39 46 anim12d AUHGraphcEdEcVdV
48 32 47 syl AUPGraphcEdEcVdV
49 6 31 48 3syl φcEdEcVdV
50 49 imp φcEdEcVdV
51 f1imaeq F:V1-1WcVdVFc=Fdc=d
52 30 50 51 syl2an2r φcEdEFc=Fdc=d
53 52 biimpd φcEdEFc=Fdc=d
54 28 53 sylbid φcEdEGc=Gdc=d
55 54 ralrimivva φcEdEGc=Gdc=d
56 dff13 G:E1-1KG:EKcEdEGc=Gdc=d
57 10 55 56 sylanbrc φG:E1-1K