Description: Lemma 3 for isomuspgrlem2 . (Contributed by AV, 29-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomushgr.v | |
|
isomushgr.w | |
||
isomushgr.e | |
||
isomushgr.k | |
||
isomuspgrlem2.g | |
||
isomuspgrlem2.a | |
||
isomuspgrlem2.f | |
||
isomuspgrlem2.i | |
||
isomuspgrlem2.x | |
||
Assertion | isomuspgrlem2c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.v | |
|
2 | isomushgr.w | |
|
3 | isomushgr.e | |
|
4 | isomushgr.k | |
|
5 | isomuspgrlem2.g | |
|
6 | isomuspgrlem2.a | |
|
7 | isomuspgrlem2.f | |
|
8 | isomuspgrlem2.i | |
|
9 | isomuspgrlem2.x | |
|
10 | 1 2 3 4 5 6 7 8 | isomuspgrlem2b | |
11 | 1 2 3 4 5 | isomuspgrlem2a | |
12 | 9 11 | syl | |
13 | imaeq2 | |
|
14 | fveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | rspcv | |
17 | 16 | ad2antrl | |
18 | 17 | imp | |
19 | 18 | eqcomd | |
20 | imaeq2 | |
|
21 | fveq2 | |
|
22 | 20 21 | eqeq12d | |
23 | 22 | rspcv | |
24 | 23 | ad2antll | |
25 | 24 | imp | |
26 | 25 | eqcomd | |
27 | 19 26 | eqeq12d | |
28 | 12 27 | mpidan | |
29 | f1of1 | |
|
30 | 7 29 | syl | |
31 | uspgrupgr | |
|
32 | upgruhgr | |
|
33 | 3 | eleq2i | |
34 | edguhgr | |
|
35 | elpwi | |
|
36 | 35 1 | sseqtrrdi | |
37 | 34 36 | syl | |
38 | 37 | ex | |
39 | 33 38 | biimtrid | |
40 | 3 | eleq2i | |
41 | edguhgr | |
|
42 | elpwi | |
|
43 | 42 1 | sseqtrrdi | |
44 | 41 43 | syl | |
45 | 44 | ex | |
46 | 40 45 | biimtrid | |
47 | 39 46 | anim12d | |
48 | 32 47 | syl | |
49 | 6 31 48 | 3syl | |
50 | 49 | imp | |
51 | f1imaeq | |
|
52 | 30 50 51 | syl2an2r | |
53 | 52 | biimpd | |
54 | 28 53 | sylbid | |
55 | 54 | ralrimivva | |
56 | dff13 | |
|
57 | 10 55 56 | sylanbrc | |