Step |
Hyp |
Ref |
Expression |
1 |
|
isomushgr.v |
|
2 |
|
isomushgr.w |
|
3 |
|
isomushgr.e |
|
4 |
|
isomushgr.k |
|
5 |
|
isomuspgrlem2.g |
|
6 |
|
isomuspgrlem2.a |
|
7 |
|
isomuspgrlem2.f |
|
8 |
|
isomuspgrlem2.i |
|
9 |
|
isomuspgrlem2.x |
|
10 |
1 2 3 4 5 6 7 8
|
isomuspgrlem2b |
|
11 |
1 2 3 4 5
|
isomuspgrlem2a |
|
12 |
9 11
|
syl |
|
13 |
|
imaeq2 |
|
14 |
|
fveq2 |
|
15 |
13 14
|
eqeq12d |
|
16 |
15
|
rspcv |
|
17 |
16
|
ad2antrl |
|
18 |
17
|
imp |
|
19 |
18
|
eqcomd |
|
20 |
|
imaeq2 |
|
21 |
|
fveq2 |
|
22 |
20 21
|
eqeq12d |
|
23 |
22
|
rspcv |
|
24 |
23
|
ad2antll |
|
25 |
24
|
imp |
|
26 |
25
|
eqcomd |
|
27 |
19 26
|
eqeq12d |
|
28 |
12 27
|
mpidan |
|
29 |
|
f1of1 |
|
30 |
7 29
|
syl |
|
31 |
|
uspgrupgr |
|
32 |
|
upgruhgr |
|
33 |
3
|
eleq2i |
|
34 |
|
edguhgr |
|
35 |
|
elpwi |
|
36 |
35 1
|
sseqtrrdi |
|
37 |
34 36
|
syl |
|
38 |
37
|
ex |
|
39 |
33 38
|
syl5bi |
|
40 |
3
|
eleq2i |
|
41 |
|
edguhgr |
|
42 |
|
elpwi |
|
43 |
42 1
|
sseqtrrdi |
|
44 |
41 43
|
syl |
|
45 |
44
|
ex |
|
46 |
40 45
|
syl5bi |
|
47 |
39 46
|
anim12d |
|
48 |
32 47
|
syl |
|
49 |
6 31 48
|
3syl |
|
50 |
49
|
imp |
|
51 |
|
f1imaeq |
|
52 |
30 50 51
|
syl2an2r |
|
53 |
52
|
biimpd |
|
54 |
28 53
|
sylbid |
|
55 |
54
|
ralrimivva |
|
56 |
|
dff13 |
|
57 |
10 55 56
|
sylanbrc |
|