| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itscnhlinecirc02plem2.d |
|- D = ( X - A ) |
| 2 |
|
itscnhlinecirc02plem2.e |
|- E = ( B - Y ) |
| 3 |
|
itscnhlinecirc02plem2.c |
|- C = ( ( B x. X ) - ( A x. Y ) ) |
| 4 |
|
simpl1l |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> A e. RR ) |
| 5 |
|
simpl1r |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> B e. RR ) |
| 6 |
|
simpl2l |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> X e. RR ) |
| 7 |
|
simpl2r |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> Y e. RR ) |
| 8 |
|
eqid |
|- ( ( D x. B ) + ( E x. A ) ) = ( ( D x. B ) + ( E x. A ) ) |
| 9 |
|
simprl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> R e. RR ) |
| 10 |
|
simprr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) |
| 11 |
|
simpl3 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> B =/= Y ) |
| 12 |
4 5 6 7 1 2 8 9 10 11
|
itscnhlinecirc02plem1 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> 0 < ( ( -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 13 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> B e. CC ) |
| 15 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> X e. CC ) |
| 17 |
14 16
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. X ) = ( X x. B ) ) |
| 18 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. RR ) |
| 19 |
18
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> A e. CC ) |
| 20 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> Y e. RR ) |
| 21 |
20
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> Y e. CC ) |
| 22 |
19 21
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A x. Y ) = ( Y x. A ) ) |
| 23 |
17 22
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. X ) - ( A x. Y ) ) = ( ( X x. B ) - ( Y x. A ) ) ) |
| 24 |
16 19 14
|
subdird |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( X - A ) x. B ) = ( ( X x. B ) - ( A x. B ) ) ) |
| 25 |
14 21 19
|
subdird |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B - Y ) x. A ) = ( ( B x. A ) - ( Y x. A ) ) ) |
| 26 |
24 25
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X - A ) x. B ) + ( ( B - Y ) x. A ) ) = ( ( ( X x. B ) - ( A x. B ) ) + ( ( B x. A ) - ( Y x. A ) ) ) ) |
| 27 |
14 19
|
mulcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( B x. A ) = ( A x. B ) ) |
| 28 |
27
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. A ) - ( Y x. A ) ) = ( ( A x. B ) - ( Y x. A ) ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X x. B ) - ( A x. B ) ) + ( ( B x. A ) - ( Y x. A ) ) ) = ( ( ( X x. B ) - ( A x. B ) ) + ( ( A x. B ) - ( Y x. A ) ) ) ) |
| 30 |
16 14
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( X x. B ) e. CC ) |
| 31 |
19 14
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( A x. B ) e. CC ) |
| 32 |
21 19
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Y x. A ) e. CC ) |
| 33 |
30 31 32
|
npncand |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X x. B ) - ( A x. B ) ) + ( ( A x. B ) - ( Y x. A ) ) ) = ( ( X x. B ) - ( Y x. A ) ) ) |
| 34 |
26 29 33
|
3eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( X - A ) x. B ) + ( ( B - Y ) x. A ) ) = ( ( X x. B ) - ( Y x. A ) ) ) |
| 35 |
23 34
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( B x. X ) - ( A x. Y ) ) = ( ( ( X - A ) x. B ) + ( ( B - Y ) x. A ) ) ) |
| 36 |
1
|
oveq1i |
|- ( D x. B ) = ( ( X - A ) x. B ) |
| 37 |
2
|
oveq1i |
|- ( E x. A ) = ( ( B - Y ) x. A ) |
| 38 |
36 37
|
oveq12i |
|- ( ( D x. B ) + ( E x. A ) ) = ( ( ( X - A ) x. B ) + ( ( B - Y ) x. A ) ) |
| 39 |
35 3 38
|
3eqtr4g |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> C = ( ( D x. B ) + ( E x. A ) ) ) |
| 40 |
39
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( D x. C ) = ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) |
| 41 |
40
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 2 x. ( D x. C ) ) = ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ) |
| 42 |
41
|
negeqd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> -u ( 2 x. ( D x. C ) ) = -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ) |
| 43 |
42
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( -u ( 2 x. ( D x. C ) ) ^ 2 ) = ( -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ^ 2 ) ) |
| 44 |
39
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) ) |
| 45 |
44
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 46 |
45
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
| 47 |
46
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
| 48 |
43 47
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 49 |
48
|
3adant3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) -> ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 50 |
49
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( -u ( 2 x. ( D x. ( ( D x. B ) + ( E x. A ) ) ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
| 51 |
12 50
|
breqtrrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) /\ B =/= Y ) /\ ( R e. RR /\ ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) ) -> 0 < ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |