Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|- ( ph -> A e. RR ) |
2 |
|
2itscp.b |
|- ( ph -> B e. RR ) |
3 |
|
2itscp.x |
|- ( ph -> X e. RR ) |
4 |
|
2itscp.y |
|- ( ph -> Y e. RR ) |
5 |
|
2itscp.d |
|- D = ( X - A ) |
6 |
|
2itscp.e |
|- E = ( B - Y ) |
7 |
|
2itscp.c |
|- C = ( ( D x. B ) + ( E x. A ) ) |
8 |
|
2itscp.r |
|- ( ph -> R e. RR ) |
9 |
|
2itscp.l |
|- ( ph -> ( ( A ^ 2 ) + ( B ^ 2 ) ) < ( R ^ 2 ) ) |
10 |
|
itscnhlinecirc02plem1.n |
|- ( ph -> B =/= Y ) |
11 |
|
4re |
|- 4 e. RR |
12 |
11
|
a1i |
|- ( ph -> 4 e. RR ) |
13 |
3 1
|
resubcld |
|- ( ph -> ( X - A ) e. RR ) |
14 |
5 13
|
eqeltrid |
|- ( ph -> D e. RR ) |
15 |
14
|
resqcld |
|- ( ph -> ( D ^ 2 ) e. RR ) |
16 |
14 2
|
remulcld |
|- ( ph -> ( D x. B ) e. RR ) |
17 |
2 4
|
resubcld |
|- ( ph -> ( B - Y ) e. RR ) |
18 |
6 17
|
eqeltrid |
|- ( ph -> E e. RR ) |
19 |
18 1
|
remulcld |
|- ( ph -> ( E x. A ) e. RR ) |
20 |
16 19
|
readdcld |
|- ( ph -> ( ( D x. B ) + ( E x. A ) ) e. RR ) |
21 |
7 20
|
eqeltrid |
|- ( ph -> C e. RR ) |
22 |
21
|
resqcld |
|- ( ph -> ( C ^ 2 ) e. RR ) |
23 |
15 22
|
remulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( C ^ 2 ) ) e. RR ) |
24 |
18
|
resqcld |
|- ( ph -> ( E ^ 2 ) e. RR ) |
25 |
24 15
|
readdcld |
|- ( ph -> ( ( E ^ 2 ) + ( D ^ 2 ) ) e. RR ) |
26 |
8
|
resqcld |
|- ( ph -> ( R ^ 2 ) e. RR ) |
27 |
24 26
|
remulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. RR ) |
28 |
22 27
|
resubcld |
|- ( ph -> ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) e. RR ) |
29 |
25 28
|
remulcld |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) e. RR ) |
30 |
23 29
|
resubcld |
|- ( ph -> ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) e. RR ) |
31 |
|
4pos |
|- 0 < 4 |
32 |
31
|
a1i |
|- ( ph -> 0 < 4 ) |
33 |
15 26
|
remulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( R ^ 2 ) ) e. RR ) |
34 |
27 33
|
readdcld |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) e. RR ) |
35 |
34 22
|
resubcld |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) e. RR ) |
36 |
6
|
a1i |
|- ( ph -> E = ( B - Y ) ) |
37 |
2
|
recnd |
|- ( ph -> B e. CC ) |
38 |
4
|
recnd |
|- ( ph -> Y e. CC ) |
39 |
37 38 10
|
subne0d |
|- ( ph -> ( B - Y ) =/= 0 ) |
40 |
36 39
|
eqnetrd |
|- ( ph -> E =/= 0 ) |
41 |
18 40
|
sqgt0d |
|- ( ph -> 0 < ( E ^ 2 ) ) |
42 |
10
|
orcd |
|- ( ph -> ( B =/= Y \/ A =/= X ) ) |
43 |
|
eqid |
|- ( ( E ^ 2 ) + ( D ^ 2 ) ) = ( ( E ^ 2 ) + ( D ^ 2 ) ) |
44 |
|
eqid |
|- ( ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) - ( C ^ 2 ) ) = ( ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) - ( C ^ 2 ) ) |
45 |
1 2 3 4 5 6 7 8 9 42 43 44
|
2itscp |
|- ( ph -> 0 < ( ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) - ( C ^ 2 ) ) ) |
46 |
24
|
recnd |
|- ( ph -> ( E ^ 2 ) e. CC ) |
47 |
15
|
recnd |
|- ( ph -> ( D ^ 2 ) e. CC ) |
48 |
26
|
recnd |
|- ( ph -> ( R ^ 2 ) e. CC ) |
49 |
46 47 48
|
adddird |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
50 |
46 47
|
addcld |
|- ( ph -> ( ( E ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
51 |
50 48
|
mulcomd |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) ) |
52 |
49 51
|
eqtr3d |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) ) |
53 |
52
|
oveq1d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) = ( ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) - ( C ^ 2 ) ) ) |
54 |
45 53
|
breqtrrd |
|- ( ph -> 0 < ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) ) |
55 |
24 35 41 54
|
mulgt0d |
|- ( ph -> 0 < ( ( E ^ 2 ) x. ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) ) ) |
56 |
47 46 48
|
mul12d |
|- ( ph -> ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) = ( ( E ^ 2 ) x. ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
57 |
56
|
oveq2d |
|- ( ph -> ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( E ^ 2 ) x. ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
58 |
46 48
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
59 |
47 48
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
60 |
46 58 59
|
adddid |
|- ( ph -> ( ( E ^ 2 ) x. ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( E ^ 2 ) x. ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
61 |
57 60
|
eqtr4d |
|- ( ph -> ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) = ( ( E ^ 2 ) x. ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) ) |
62 |
61
|
oveq1d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) ) |
63 |
58 59
|
addcld |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
64 |
22
|
recnd |
|- ( ph -> ( C ^ 2 ) e. CC ) |
65 |
46 63 64
|
subdid |
|- ( ph -> ( ( E ^ 2 ) x. ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) ) |
66 |
62 65
|
eqtr4d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) = ( ( E ^ 2 ) x. ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( C ^ 2 ) ) ) ) |
67 |
55 66
|
breqtrrd |
|- ( ph -> 0 < ( ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) ) |
68 |
18
|
recnd |
|- ( ph -> E e. CC ) |
69 |
68
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
70 |
14
|
recnd |
|- ( ph -> D e. CC ) |
71 |
70
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
72 |
27
|
recnd |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
73 |
|
mulsubaddmulsub |
|- ( ( ( ( E ^ 2 ) e. CC /\ ( D ^ 2 ) e. CC ) /\ ( ( C ^ 2 ) e. CC /\ ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) ) -> ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) ) |
74 |
69 71 64 72 73
|
syl22anc |
|- ( ph -> ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( C ^ 2 ) ) ) ) |
75 |
67 74
|
breqtrrd |
|- ( ph -> 0 < ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) |
76 |
12 30 32 75
|
mulgt0d |
|- ( ph -> 0 < ( 4 x. ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
77 |
|
4cn |
|- 4 e. CC |
78 |
77
|
a1i |
|- ( ph -> 4 e. CC ) |
79 |
21
|
recnd |
|- ( ph -> C e. CC ) |
80 |
79
|
sqcld |
|- ( ph -> ( C ^ 2 ) e. CC ) |
81 |
71 80
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( C ^ 2 ) ) e. CC ) |
82 |
69 71
|
addcld |
|- ( ph -> ( ( E ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
83 |
8
|
recnd |
|- ( ph -> R e. CC ) |
84 |
83
|
sqcld |
|- ( ph -> ( R ^ 2 ) e. CC ) |
85 |
69 84
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
86 |
80 85
|
subcld |
|- ( ph -> ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
87 |
82 86
|
mulcld |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) e. CC ) |
88 |
78 81 87
|
subdid |
|- ( ph -> ( 4 x. ( ( ( D ^ 2 ) x. ( C ^ 2 ) ) - ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( 4 x. ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
89 |
76 88
|
breqtrd |
|- ( ph -> 0 < ( ( 4 x. ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
90 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
91 |
70 79
|
mulcld |
|- ( ph -> ( D x. C ) e. CC ) |
92 |
90 91
|
mulcld |
|- ( ph -> ( 2 x. ( D x. C ) ) e. CC ) |
93 |
|
sqneg |
|- ( ( 2 x. ( D x. C ) ) e. CC -> ( -u ( 2 x. ( D x. C ) ) ^ 2 ) = ( ( 2 x. ( D x. C ) ) ^ 2 ) ) |
94 |
92 93
|
syl |
|- ( ph -> ( -u ( 2 x. ( D x. C ) ) ^ 2 ) = ( ( 2 x. ( D x. C ) ) ^ 2 ) ) |
95 |
90 91
|
sqmuld |
|- ( ph -> ( ( 2 x. ( D x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( ( D x. C ) ^ 2 ) ) ) |
96 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
97 |
96
|
a1i |
|- ( ph -> ( 2 ^ 2 ) = 4 ) |
98 |
70 79
|
sqmuld |
|- ( ph -> ( ( D x. C ) ^ 2 ) = ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) |
99 |
97 98
|
oveq12d |
|- ( ph -> ( ( 2 ^ 2 ) x. ( ( D x. C ) ^ 2 ) ) = ( 4 x. ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) ) |
100 |
94 95 99
|
3eqtrd |
|- ( ph -> ( -u ( 2 x. ( D x. C ) ) ^ 2 ) = ( 4 x. ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) ) |
101 |
100
|
oveq1d |
|- ( ph -> ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) = ( ( 4 x. ( ( D ^ 2 ) x. ( C ^ 2 ) ) ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |
102 |
89 101
|
breqtrrd |
|- ( ph -> 0 < ( ( -u ( 2 x. ( D x. C ) ) ^ 2 ) - ( 4 x. ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( ( C ^ 2 ) - ( ( E ^ 2 ) x. ( R ^ 2 ) ) ) ) ) ) ) |