| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) | 
						
							| 2 |  | simprl |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) | 
						
							| 3 | 1 2 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) | 
						
							| 4 |  | subaddmulsub |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( B x. C ) e. CC ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) | 
						
							| 5 | 3 4 | mpd3an3 |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) | 
						
							| 6 |  | simpll |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) | 
						
							| 7 | 6 2 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) | 
						
							| 8 | 3 7 3 | sub32d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) ) | 
						
							| 9 | 3 | subidd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( B x. C ) ) = 0 ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) = ( 0 - ( A x. C ) ) ) | 
						
							| 11 | 8 10 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( 0 - ( A x. C ) ) ) | 
						
							| 12 |  | df-neg |  |-  -u ( A x. C ) = ( 0 - ( A x. C ) ) | 
						
							| 13 | 11 12 | eqtr4di |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = -u ( A x. C ) ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) ) | 
						
							| 15 | 7 | negcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> -u ( A x. C ) e. CC ) | 
						
							| 16 |  | simprr |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) | 
						
							| 17 | 6 16 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) | 
						
							| 18 | 1 16 | mulcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) | 
						
							| 19 | 17 18 | addcld |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) | 
						
							| 20 | 15 19 | addcomd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) ) | 
						
							| 21 | 19 7 | negsubd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) | 
						
							| 22 | 20 21 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) | 
						
							| 23 | 14 22 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) | 
						
							| 24 | 5 23 | eqtrd |  |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |