| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
| 2 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
| 3 |
1 2
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) |
| 4 |
|
subaddmulsub |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) /\ ( B x. C ) e. CC ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 5 |
3 4
|
mpd3an3 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 6 |
|
simpll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
| 7 |
6 2
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) |
| 8 |
3 7 3
|
sub32d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) ) |
| 9 |
3
|
subidd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( B x. C ) ) = 0 ) |
| 10 |
9
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( B x. C ) ) - ( A x. C ) ) = ( 0 - ( A x. C ) ) ) |
| 11 |
8 10
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = ( 0 - ( A x. C ) ) ) |
| 12 |
|
df-neg |
|- -u ( A x. C ) = ( 0 - ( A x. C ) ) |
| 13 |
11 12
|
eqtr4di |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) = -u ( A x. C ) ) |
| 14 |
13
|
oveq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 15 |
7
|
negcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> -u ( A x. C ) e. CC ) |
| 16 |
|
simprr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
| 17 |
6 16
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) |
| 18 |
1 16
|
mulcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) |
| 19 |
17 18
|
addcld |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 20 |
15 19
|
addcomd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) ) |
| 21 |
19 7
|
negsubd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. D ) + ( B x. D ) ) + -u ( A x. C ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 22 |
20 21
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( -u ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 23 |
14 22
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( B x. C ) - ( A x. C ) ) - ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |
| 24 |
5 23
|
eqtrd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B x. C ) - ( ( A + B ) x. ( C - D ) ) ) = ( ( ( A x. D ) + ( B x. D ) ) - ( A x. C ) ) ) |