Metamath Proof Explorer


Theorem mulsubaddmulsub

Description: A special difference of a product with a product of a sum and a difference. (Contributed by AV, 5-Mar-2023)

Ref Expression
Assertion mulsubaddmulsub ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · ( 𝐶𝐷 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) − ( 𝐴 · 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 simplr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ )
2 simprl ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ )
3 1 2 mulcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ )
4 subaddmulsub ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ) → ( ( 𝐵 · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · ( 𝐶𝐷 ) ) ) = ( ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) )
5 3 4 mpd3an3 ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · ( 𝐶𝐷 ) ) ) = ( ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) )
6 simpll ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ )
7 6 2 mulcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ )
8 3 7 3 sub32d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) = ( ( ( 𝐵 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) − ( 𝐴 · 𝐶 ) ) )
9 3 subidd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) = 0 )
10 9 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) − ( 𝐴 · 𝐶 ) ) = ( 0 − ( 𝐴 · 𝐶 ) ) )
11 8 10 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) = ( 0 − ( 𝐴 · 𝐶 ) ) )
12 df-neg - ( 𝐴 · 𝐶 ) = ( 0 − ( 𝐴 · 𝐶 ) )
13 11 12 eqtr4di ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) = - ( 𝐴 · 𝐶 ) )
14 13 oveq1d ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( - ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) )
15 7 negcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → - ( 𝐴 · 𝐶 ) ∈ ℂ )
16 simprr ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ )
17 6 16 mulcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ )
18 1 16 mulcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐵 · 𝐷 ) ∈ ℂ )
19 17 18 addcld ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ )
20 15 19 addcomd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( - ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) + - ( 𝐴 · 𝐶 ) ) )
21 19 7 negsubd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) + - ( 𝐴 · 𝐶 ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) − ( 𝐴 · 𝐶 ) ) )
22 20 21 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( - ( 𝐴 · 𝐶 ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) − ( 𝐴 · 𝐶 ) ) )
23 14 22 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) − ( 𝐵 · 𝐶 ) ) + ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) − ( 𝐴 · 𝐶 ) ) )
24 5 23 eqtrd ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐵 · 𝐶 ) − ( ( 𝐴 + 𝐵 ) · ( 𝐶𝐷 ) ) ) = ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐷 ) ) − ( 𝐴 · 𝐶 ) ) )