Metamath Proof Explorer


Theorem iunctb2

Description: Using the axiom of countable choice ax-cc , the countable union of countable sets is countable. See iunctb for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020)

Ref Expression
Assertion iunctb2
|- ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om )

Proof

Step Hyp Ref Expression
1 omex
 |-  _om e. _V
2 domrefg
 |-  ( _om e. _V -> _om ~<_ _om )
3 1 2 ax-mp
 |-  _om ~<_ _om
4 iunctb
 |-  ( ( _om ~<_ _om /\ A. x e. _om B ~<_ _om ) -> U_ x e. _om B ~<_ _om )
5 3 4 mpan
 |-  ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om )