Description: Using the axiom of countable choice ax-cc , the countable union of countable sets is countable. See iunctb for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | iunctb2 | |- ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex | |- _om e. _V |
|
2 | domrefg | |- ( _om e. _V -> _om ~<_ _om ) |
|
3 | 1 2 | ax-mp | |- _om ~<_ _om |
4 | iunctb | |- ( ( _om ~<_ _om /\ A. x e. _om B ~<_ _om ) -> U_ x e. _om B ~<_ _om ) |
|
5 | 3 4 | mpan | |- ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om ) |