Description: Using the axiom of countable choice ax-cc , the countable union of countable sets is countable. See iunctb for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunctb2 | |- ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omex | |- _om e. _V | |
| 2 | domrefg | |- ( _om e. _V -> _om ~<_ _om ) | |
| 3 | 1 2 | ax-mp | |- _om ~<_ _om | 
| 4 | iunctb | |- ( ( _om ~<_ _om /\ A. x e. _om B ~<_ _om ) -> U_ x e. _om B ~<_ _om ) | |
| 5 | 3 4 | mpan | |- ( A. x e. _om B ~<_ _om -> U_ x e. _om B ~<_ _om ) |