Metamath Proof Explorer


Theorem iunctb2

Description: Using the axiom of countable choice ax-cc , the countable union of countable sets is countable. See iunctb for a somewhat more general theorem. (Contributed by ML, 10-Dec-2020)

Ref Expression
Assertion iunctb2 ( ∀ 𝑥 ∈ ω 𝐵 ≼ ω → 𝑥 ∈ ω 𝐵 ≼ ω )

Proof

Step Hyp Ref Expression
1 omex ω ∈ V
2 domrefg ( ω ∈ V → ω ≼ ω )
3 1 2 ax-mp ω ≼ ω
4 iunctb ( ( ω ≼ ω ∧ ∀ 𝑥 ∈ ω 𝐵 ≼ ω ) → 𝑥 ∈ ω 𝐵 ≼ ω )
5 3 4 mpan ( ∀ 𝑥 ∈ ω 𝐵 ≼ ω → 𝑥 ∈ ω 𝐵 ≼ ω )