| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfra1 |
⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 |
| 2 |
|
breq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴 ) ) |
| 3 |
2
|
imbi2d |
⊢ ( 𝑦 = 𝑛 → ( ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → 𝑦 ≺ 𝐴 ) ↔ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → 𝑛 ≺ 𝐴 ) ) ) |
| 4 |
|
breq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) ) |
| 5 |
|
breq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≺ 𝐴 ↔ 𝑧 ≺ 𝐴 ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 ≺ 𝐴 ↔ suc 𝑧 ≺ 𝐴 ) ) |
| 7 |
|
1n0 |
⊢ 1o ≠ ∅ |
| 8 |
|
1onn |
⊢ 1o ∈ ω |
| 9 |
|
0sdomg |
⊢ ( 1o ∈ ω → ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ∅ ≺ 1o ↔ 1o ≠ ∅ ) |
| 11 |
7 10
|
mpbir |
⊢ ∅ ≺ 1o |
| 12 |
|
breq1 |
⊢ ( 𝑛 = 1o → ( 𝑛 ≼ 𝐴 ↔ 1o ≼ 𝐴 ) ) |
| 13 |
12
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ( 1o ∈ ω → 1o ≼ 𝐴 ) ) |
| 14 |
8 13
|
mpi |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → 1o ≼ 𝐴 ) |
| 15 |
|
sdomdomtr |
⊢ ( ( ∅ ≺ 1o ∧ 1o ≼ 𝐴 ) → ∅ ≺ 𝐴 ) |
| 16 |
11 14 15
|
sylancr |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ∅ ≺ 𝐴 ) |
| 17 |
|
peano2 |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ ω ) |
| 18 |
|
php4 |
⊢ ( suc 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑧 ∈ ω → suc 𝑧 ≺ suc suc 𝑧 ) |
| 20 |
|
breq1 |
⊢ ( 𝑛 = suc suc 𝑧 → ( 𝑛 ≼ 𝐴 ↔ suc suc 𝑧 ≼ 𝐴 ) ) |
| 21 |
20
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ( suc suc 𝑧 ∈ ω → suc suc 𝑧 ≼ 𝐴 ) ) |
| 22 |
|
peano2 |
⊢ ( suc 𝑧 ∈ ω → suc suc 𝑧 ∈ ω ) |
| 23 |
17 22
|
syl |
⊢ ( 𝑧 ∈ ω → suc suc 𝑧 ∈ ω ) |
| 24 |
21 23
|
impel |
⊢ ( ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 ∧ 𝑧 ∈ ω ) → suc suc 𝑧 ≼ 𝐴 ) |
| 25 |
|
sdomdomtr |
⊢ ( ( suc 𝑧 ≺ suc suc 𝑧 ∧ suc suc 𝑧 ≼ 𝐴 ) → suc 𝑧 ≺ 𝐴 ) |
| 26 |
19 24 25
|
syl2an2 |
⊢ ( ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 ∧ 𝑧 ∈ ω ) → suc 𝑧 ≺ 𝐴 ) |
| 27 |
26
|
a1d |
⊢ ( ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 ∧ 𝑧 ∈ ω ) → ( 𝑧 ≺ 𝐴 → suc 𝑧 ≺ 𝐴 ) ) |
| 28 |
27
|
expcom |
⊢ ( 𝑧 ∈ ω → ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ( 𝑧 ≺ 𝐴 → suc 𝑧 ≺ 𝐴 ) ) ) |
| 29 |
4 5 6 16 28
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → 𝑦 ≺ 𝐴 ) ) |
| 30 |
3 29
|
vtoclga |
⊢ ( 𝑛 ∈ ω → ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → 𝑛 ≺ 𝐴 ) ) |
| 31 |
30
|
com12 |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ( 𝑛 ∈ ω → 𝑛 ≺ 𝐴 ) ) |
| 32 |
1 31
|
ralrimi |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ∀ 𝑛 ∈ ω 𝑛 ≺ 𝐴 ) |
| 33 |
|
sdomnen |
⊢ ( 𝑛 ≺ 𝐴 → ¬ 𝑛 ≈ 𝐴 ) |
| 34 |
|
ensym |
⊢ ( 𝐴 ≈ 𝑛 → 𝑛 ≈ 𝐴 ) |
| 35 |
33 34
|
nsyl |
⊢ ( 𝑛 ≺ 𝐴 → ¬ 𝐴 ≈ 𝑛 ) |
| 36 |
35
|
ralimi |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≺ 𝐴 → ∀ 𝑛 ∈ ω ¬ 𝐴 ≈ 𝑛 ) |
| 37 |
32 36
|
syl |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ∀ 𝑛 ∈ ω ¬ 𝐴 ≈ 𝑛 ) |
| 38 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑛 ∈ ω 𝐴 ≈ 𝑛 ) |
| 39 |
38
|
notbii |
⊢ ( ¬ 𝐴 ∈ Fin ↔ ¬ ∃ 𝑛 ∈ ω 𝐴 ≈ 𝑛 ) |
| 40 |
|
ralnex |
⊢ ( ∀ 𝑛 ∈ ω ¬ 𝐴 ≈ 𝑛 ↔ ¬ ∃ 𝑛 ∈ ω 𝐴 ≈ 𝑛 ) |
| 41 |
39 40
|
bitr4i |
⊢ ( ¬ 𝐴 ∈ Fin ↔ ∀ 𝑛 ∈ ω ¬ 𝐴 ≈ 𝑛 ) |
| 42 |
37 41
|
sylibr |
⊢ ( ∀ 𝑛 ∈ ω 𝑛 ≼ 𝐴 → ¬ 𝐴 ∈ Fin ) |