Metamath Proof Explorer


Theorem domalom

Description: A class which dominates every natural number is not finite. (Contributed by ML, 14-Dec-2020)

Ref Expression
Assertion domalom n ω n A ¬ A Fin

Proof

Step Hyp Ref Expression
1 nfra1 n n ω n A
2 breq1 y = n y A n A
3 2 imbi2d y = n n ω n A y A n ω n A n A
4 breq1 y = y A A
5 breq1 y = z y A z A
6 breq1 y = suc z y A suc z A
7 1n0 1 𝑜
8 1onn 1 𝑜 ω
9 0sdomg 1 𝑜 ω 1 𝑜 1 𝑜
10 8 9 ax-mp 1 𝑜 1 𝑜
11 7 10 mpbir 1 𝑜
12 breq1 n = 1 𝑜 n A 1 𝑜 A
13 12 rspccv n ω n A 1 𝑜 ω 1 𝑜 A
14 8 13 mpi n ω n A 1 𝑜 A
15 sdomdomtr 1 𝑜 1 𝑜 A A
16 11 14 15 sylancr n ω n A A
17 peano2 z ω suc z ω
18 php4 suc z ω suc z suc suc z
19 17 18 syl z ω suc z suc suc z
20 breq1 n = suc suc z n A suc suc z A
21 20 rspccv n ω n A suc suc z ω suc suc z A
22 peano2 suc z ω suc suc z ω
23 17 22 syl z ω suc suc z ω
24 21 23 impel n ω n A z ω suc suc z A
25 sdomdomtr suc z suc suc z suc suc z A suc z A
26 19 24 25 syl2an2 n ω n A z ω suc z A
27 26 a1d n ω n A z ω z A suc z A
28 27 expcom z ω n ω n A z A suc z A
29 4 5 6 16 28 finds2 y ω n ω n A y A
30 3 29 vtoclga n ω n ω n A n A
31 30 com12 n ω n A n ω n A
32 1 31 ralrimi n ω n A n ω n A
33 sdomnen n A ¬ n A
34 ensym A n n A
35 33 34 nsyl n A ¬ A n
36 35 ralimi n ω n A n ω ¬ A n
37 32 36 syl n ω n A n ω ¬ A n
38 isfi A Fin n ω A n
39 38 notbii ¬ A Fin ¬ n ω A n
40 ralnex n ω ¬ A n ¬ n ω A n
41 39 40 bitr4i ¬ A Fin n ω ¬ A n
42 37 41 sylibr n ω n A ¬ A Fin