Step |
Hyp |
Ref |
Expression |
1 |
|
nfra1 |
|- F/ n A. n e. _om n ~<_ A |
2 |
|
breq1 |
|- ( y = n -> ( y ~< A <-> n ~< A ) ) |
3 |
2
|
imbi2d |
|- ( y = n -> ( ( A. n e. _om n ~<_ A -> y ~< A ) <-> ( A. n e. _om n ~<_ A -> n ~< A ) ) ) |
4 |
|
breq1 |
|- ( y = (/) -> ( y ~< A <-> (/) ~< A ) ) |
5 |
|
breq1 |
|- ( y = z -> ( y ~< A <-> z ~< A ) ) |
6 |
|
breq1 |
|- ( y = suc z -> ( y ~< A <-> suc z ~< A ) ) |
7 |
|
1n0 |
|- 1o =/= (/) |
8 |
|
1onn |
|- 1o e. _om |
9 |
|
0sdomg |
|- ( 1o e. _om -> ( (/) ~< 1o <-> 1o =/= (/) ) ) |
10 |
8 9
|
ax-mp |
|- ( (/) ~< 1o <-> 1o =/= (/) ) |
11 |
7 10
|
mpbir |
|- (/) ~< 1o |
12 |
|
breq1 |
|- ( n = 1o -> ( n ~<_ A <-> 1o ~<_ A ) ) |
13 |
12
|
rspccv |
|- ( A. n e. _om n ~<_ A -> ( 1o e. _om -> 1o ~<_ A ) ) |
14 |
8 13
|
mpi |
|- ( A. n e. _om n ~<_ A -> 1o ~<_ A ) |
15 |
|
sdomdomtr |
|- ( ( (/) ~< 1o /\ 1o ~<_ A ) -> (/) ~< A ) |
16 |
11 14 15
|
sylancr |
|- ( A. n e. _om n ~<_ A -> (/) ~< A ) |
17 |
|
peano2 |
|- ( z e. _om -> suc z e. _om ) |
18 |
|
php4 |
|- ( suc z e. _om -> suc z ~< suc suc z ) |
19 |
17 18
|
syl |
|- ( z e. _om -> suc z ~< suc suc z ) |
20 |
|
breq1 |
|- ( n = suc suc z -> ( n ~<_ A <-> suc suc z ~<_ A ) ) |
21 |
20
|
rspccv |
|- ( A. n e. _om n ~<_ A -> ( suc suc z e. _om -> suc suc z ~<_ A ) ) |
22 |
|
peano2 |
|- ( suc z e. _om -> suc suc z e. _om ) |
23 |
17 22
|
syl |
|- ( z e. _om -> suc suc z e. _om ) |
24 |
21 23
|
impel |
|- ( ( A. n e. _om n ~<_ A /\ z e. _om ) -> suc suc z ~<_ A ) |
25 |
|
sdomdomtr |
|- ( ( suc z ~< suc suc z /\ suc suc z ~<_ A ) -> suc z ~< A ) |
26 |
19 24 25
|
syl2an2 |
|- ( ( A. n e. _om n ~<_ A /\ z e. _om ) -> suc z ~< A ) |
27 |
26
|
a1d |
|- ( ( A. n e. _om n ~<_ A /\ z e. _om ) -> ( z ~< A -> suc z ~< A ) ) |
28 |
27
|
expcom |
|- ( z e. _om -> ( A. n e. _om n ~<_ A -> ( z ~< A -> suc z ~< A ) ) ) |
29 |
4 5 6 16 28
|
finds2 |
|- ( y e. _om -> ( A. n e. _om n ~<_ A -> y ~< A ) ) |
30 |
3 29
|
vtoclga |
|- ( n e. _om -> ( A. n e. _om n ~<_ A -> n ~< A ) ) |
31 |
30
|
com12 |
|- ( A. n e. _om n ~<_ A -> ( n e. _om -> n ~< A ) ) |
32 |
1 31
|
ralrimi |
|- ( A. n e. _om n ~<_ A -> A. n e. _om n ~< A ) |
33 |
|
sdomnen |
|- ( n ~< A -> -. n ~~ A ) |
34 |
|
ensym |
|- ( A ~~ n -> n ~~ A ) |
35 |
33 34
|
nsyl |
|- ( n ~< A -> -. A ~~ n ) |
36 |
35
|
ralimi |
|- ( A. n e. _om n ~< A -> A. n e. _om -. A ~~ n ) |
37 |
32 36
|
syl |
|- ( A. n e. _om n ~<_ A -> A. n e. _om -. A ~~ n ) |
38 |
|
isfi |
|- ( A e. Fin <-> E. n e. _om A ~~ n ) |
39 |
38
|
notbii |
|- ( -. A e. Fin <-> -. E. n e. _om A ~~ n ) |
40 |
|
ralnex |
|- ( A. n e. _om -. A ~~ n <-> -. E. n e. _om A ~~ n ) |
41 |
39 40
|
bitr4i |
|- ( -. A e. Fin <-> A. n e. _om -. A ~~ n ) |
42 |
37 41
|
sylibr |
|- ( A. n e. _om n ~<_ A -> -. A e. Fin ) |