| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdomg |
|- ( A e. _V -> ( x C_ A -> x ~<_ A ) ) |
| 2 |
1
|
adantr |
|- ( ( A e. _V /\ x ~~ n ) -> ( x C_ A -> x ~<_ A ) ) |
| 3 |
|
domen1 |
|- ( x ~~ n -> ( x ~<_ A <-> n ~<_ A ) ) |
| 4 |
3
|
adantl |
|- ( ( A e. _V /\ x ~~ n ) -> ( x ~<_ A <-> n ~<_ A ) ) |
| 5 |
2 4
|
sylibd |
|- ( ( A e. _V /\ x ~~ n ) -> ( x C_ A -> n ~<_ A ) ) |
| 6 |
5
|
expimpd |
|- ( A e. _V -> ( ( x ~~ n /\ x C_ A ) -> n ~<_ A ) ) |
| 7 |
6
|
ancomsd |
|- ( A e. _V -> ( ( x C_ A /\ x ~~ n ) -> n ~<_ A ) ) |
| 8 |
7
|
exlimdv |
|- ( A e. _V -> ( E. x ( x C_ A /\ x ~~ n ) -> n ~<_ A ) ) |
| 9 |
8
|
ralimdv |
|- ( A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> A. n e. _om n ~<_ A ) ) |
| 10 |
|
domalom |
|- ( A. n e. _om n ~<_ A -> -. A e. Fin ) |
| 11 |
9 10
|
syl6 |
|- ( A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) ) |
| 12 |
|
prcnel |
|- ( -. A e. _V -> -. A e. Fin ) |
| 13 |
12
|
a1d |
|- ( -. A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) ) |
| 14 |
11 13
|
pm2.61i |
|- ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) |