Step |
Hyp |
Ref |
Expression |
1 |
|
ssdomg |
|- ( A e. _V -> ( x C_ A -> x ~<_ A ) ) |
2 |
1
|
adantr |
|- ( ( A e. _V /\ x ~~ n ) -> ( x C_ A -> x ~<_ A ) ) |
3 |
|
domen1 |
|- ( x ~~ n -> ( x ~<_ A <-> n ~<_ A ) ) |
4 |
3
|
adantl |
|- ( ( A e. _V /\ x ~~ n ) -> ( x ~<_ A <-> n ~<_ A ) ) |
5 |
2 4
|
sylibd |
|- ( ( A e. _V /\ x ~~ n ) -> ( x C_ A -> n ~<_ A ) ) |
6 |
5
|
expimpd |
|- ( A e. _V -> ( ( x ~~ n /\ x C_ A ) -> n ~<_ A ) ) |
7 |
6
|
ancomsd |
|- ( A e. _V -> ( ( x C_ A /\ x ~~ n ) -> n ~<_ A ) ) |
8 |
7
|
exlimdv |
|- ( A e. _V -> ( E. x ( x C_ A /\ x ~~ n ) -> n ~<_ A ) ) |
9 |
8
|
ralimdv |
|- ( A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> A. n e. _om n ~<_ A ) ) |
10 |
|
domalom |
|- ( A. n e. _om n ~<_ A -> -. A e. Fin ) |
11 |
9 10
|
syl6 |
|- ( A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) ) |
12 |
|
prcnel |
|- ( -. A e. _V -> -. A e. Fin ) |
13 |
12
|
a1d |
|- ( -. A e. _V -> ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) ) |
14 |
11 13
|
pm2.61i |
|- ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> -. A e. Fin ) |