| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinf |
|- ( -. A e. Fin -> A. n e. _om E. x ( x C_ A /\ x ~~ n ) ) |
| 2 |
|
omex |
|- _om e. _V |
| 3 |
|
sseq1 |
|- ( x = ( f ` n ) -> ( x C_ A <-> ( f ` n ) C_ A ) ) |
| 4 |
|
breq1 |
|- ( x = ( f ` n ) -> ( x ~~ n <-> ( f ` n ) ~~ n ) ) |
| 5 |
3 4
|
anbi12d |
|- ( x = ( f ` n ) -> ( ( x C_ A /\ x ~~ n ) <-> ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) ) |
| 6 |
2 5
|
ac6s2 |
|- ( A. n e. _om E. x ( x C_ A /\ x ~~ n ) -> E. f ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) ) |
| 7 |
|
simpl |
|- ( ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> ( f ` n ) C_ A ) |
| 8 |
7
|
ralimi |
|- ( A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> A. n e. _om ( f ` n ) C_ A ) |
| 9 |
|
fvex |
|- ( f ` n ) e. _V |
| 10 |
9
|
elpw |
|- ( ( f ` n ) e. ~P A <-> ( f ` n ) C_ A ) |
| 11 |
10
|
ralbii |
|- ( A. n e. _om ( f ` n ) e. ~P A <-> A. n e. _om ( f ` n ) C_ A ) |
| 12 |
|
fnfvrnss |
|- ( ( f Fn _om /\ A. n e. _om ( f ` n ) e. ~P A ) -> ran f C_ ~P A ) |
| 13 |
|
uniss |
|- ( ran f C_ ~P A -> U. ran f C_ U. ~P A ) |
| 14 |
|
unipw |
|- U. ~P A = A |
| 15 |
13 14
|
sseqtrdi |
|- ( ran f C_ ~P A -> U. ran f C_ A ) |
| 16 |
12 15
|
syl |
|- ( ( f Fn _om /\ A. n e. _om ( f ` n ) e. ~P A ) -> U. ran f C_ A ) |
| 17 |
11 16
|
sylan2br |
|- ( ( f Fn _om /\ A. n e. _om ( f ` n ) C_ A ) -> U. ran f C_ A ) |
| 18 |
8 17
|
sylan2 |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> U. ran f C_ A ) |
| 19 |
|
dffn5 |
|- ( f Fn _om <-> f = ( n e. _om |-> ( f ` n ) ) ) |
| 20 |
19
|
biimpi |
|- ( f Fn _om -> f = ( n e. _om |-> ( f ` n ) ) ) |
| 21 |
20
|
rneqd |
|- ( f Fn _om -> ran f = ran ( n e. _om |-> ( f ` n ) ) ) |
| 22 |
21
|
unieqd |
|- ( f Fn _om -> U. ran f = U. ran ( n e. _om |-> ( f ` n ) ) ) |
| 23 |
9
|
dfiun3 |
|- U_ n e. _om ( f ` n ) = U. ran ( n e. _om |-> ( f ` n ) ) |
| 24 |
22 23
|
eqtr4di |
|- ( f Fn _om -> U. ran f = U_ n e. _om ( f ` n ) ) |
| 25 |
24
|
adantr |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> U. ran f = U_ n e. _om ( f ` n ) ) |
| 26 |
|
simpr |
|- ( ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> ( f ` n ) ~~ n ) |
| 27 |
26
|
ralimi |
|- ( A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> A. n e. _om ( f ` n ) ~~ n ) |
| 28 |
|
endom |
|- ( ( f ` n ) ~~ n -> ( f ` n ) ~<_ n ) |
| 29 |
|
nnsdom |
|- ( n e. _om -> n ~< _om ) |
| 30 |
|
domsdomtr |
|- ( ( ( f ` n ) ~<_ n /\ n ~< _om ) -> ( f ` n ) ~< _om ) |
| 31 |
|
sdomdom |
|- ( ( f ` n ) ~< _om -> ( f ` n ) ~<_ _om ) |
| 32 |
30 31
|
syl |
|- ( ( ( f ` n ) ~<_ n /\ n ~< _om ) -> ( f ` n ) ~<_ _om ) |
| 33 |
28 29 32
|
syl2anr |
|- ( ( n e. _om /\ ( f ` n ) ~~ n ) -> ( f ` n ) ~<_ _om ) |
| 34 |
33
|
ralimiaa |
|- ( A. n e. _om ( f ` n ) ~~ n -> A. n e. _om ( f ` n ) ~<_ _om ) |
| 35 |
|
iunctb2 |
|- ( A. n e. _om ( f ` n ) ~<_ _om -> U_ n e. _om ( f ` n ) ~<_ _om ) |
| 36 |
27 34 35
|
3syl |
|- ( A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> U_ n e. _om ( f ` n ) ~<_ _om ) |
| 37 |
36
|
adantl |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> U_ n e. _om ( f ` n ) ~<_ _om ) |
| 38 |
25 37
|
eqbrtrd |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> U. ran f ~<_ _om ) |
| 39 |
|
fvssunirn |
|- ( f ` n ) C_ U. ran f |
| 40 |
39
|
jctl |
|- ( ( f ` n ) ~~ n -> ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) ) |
| 41 |
40
|
adantl |
|- ( ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) ) |
| 42 |
41
|
ralimi |
|- ( A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> A. n e. _om ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) ) |
| 43 |
|
sseq1 |
|- ( x = ( f ` n ) -> ( x C_ U. ran f <-> ( f ` n ) C_ U. ran f ) ) |
| 44 |
43 4
|
anbi12d |
|- ( x = ( f ` n ) -> ( ( x C_ U. ran f /\ x ~~ n ) <-> ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) ) ) |
| 45 |
9 44
|
spcev |
|- ( ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) -> E. x ( x C_ U. ran f /\ x ~~ n ) ) |
| 46 |
45
|
ralimi |
|- ( A. n e. _om ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) -> A. n e. _om E. x ( x C_ U. ran f /\ x ~~ n ) ) |
| 47 |
|
isinf2 |
|- ( A. n e. _om E. x ( x C_ U. ran f /\ x ~~ n ) -> -. U. ran f e. Fin ) |
| 48 |
46 47
|
syl |
|- ( A. n e. _om ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) -> -. U. ran f e. Fin ) |
| 49 |
|
vex |
|- f e. _V |
| 50 |
49
|
rnex |
|- ran f e. _V |
| 51 |
50
|
uniex |
|- U. ran f e. _V |
| 52 |
|
infinf |
|- ( U. ran f e. _V -> ( -. U. ran f e. Fin <-> _om ~<_ U. ran f ) ) |
| 53 |
51 52
|
ax-mp |
|- ( -. U. ran f e. Fin <-> _om ~<_ U. ran f ) |
| 54 |
48 53
|
sylib |
|- ( A. n e. _om ( ( f ` n ) C_ U. ran f /\ ( f ` n ) ~~ n ) -> _om ~<_ U. ran f ) |
| 55 |
42 54
|
syl |
|- ( A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) -> _om ~<_ U. ran f ) |
| 56 |
55
|
adantl |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> _om ~<_ U. ran f ) |
| 57 |
|
sbth |
|- ( ( U. ran f ~<_ _om /\ _om ~<_ U. ran f ) -> U. ran f ~~ _om ) |
| 58 |
38 56 57
|
syl2anc |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> U. ran f ~~ _om ) |
| 59 |
|
sseq1 |
|- ( x = U. ran f -> ( x C_ A <-> U. ran f C_ A ) ) |
| 60 |
|
breq1 |
|- ( x = U. ran f -> ( x ~~ _om <-> U. ran f ~~ _om ) ) |
| 61 |
59 60
|
anbi12d |
|- ( x = U. ran f -> ( ( x C_ A /\ x ~~ _om ) <-> ( U. ran f C_ A /\ U. ran f ~~ _om ) ) ) |
| 62 |
51 61
|
spcev |
|- ( ( U. ran f C_ A /\ U. ran f ~~ _om ) -> E. x ( x C_ A /\ x ~~ _om ) ) |
| 63 |
18 58 62
|
syl2anc |
|- ( ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> E. x ( x C_ A /\ x ~~ _om ) ) |
| 64 |
63
|
exlimiv |
|- ( E. f ( f Fn _om /\ A. n e. _om ( ( f ` n ) C_ A /\ ( f ` n ) ~~ n ) ) -> E. x ( x C_ A /\ x ~~ _om ) ) |
| 65 |
1 6 64
|
3syl |
|- ( -. A e. Fin -> E. x ( x C_ A /\ x ~~ _om ) ) |