Metamath Proof Explorer


Theorem isinf2

Description: The converse of isinf . Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set hascountably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020)

Ref Expression
Assertion isinf2 ( ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → ¬ 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 ssdomg ( 𝐴 ∈ V → ( 𝑥𝐴𝑥𝐴 ) )
2 1 adantr ( ( 𝐴 ∈ V ∧ 𝑥𝑛 ) → ( 𝑥𝐴𝑥𝐴 ) )
3 domen1 ( 𝑥𝑛 → ( 𝑥𝐴𝑛𝐴 ) )
4 3 adantl ( ( 𝐴 ∈ V ∧ 𝑥𝑛 ) → ( 𝑥𝐴𝑛𝐴 ) )
5 2 4 sylibd ( ( 𝐴 ∈ V ∧ 𝑥𝑛 ) → ( 𝑥𝐴𝑛𝐴 ) )
6 5 expimpd ( 𝐴 ∈ V → ( ( 𝑥𝑛𝑥𝐴 ) → 𝑛𝐴 ) )
7 6 ancomsd ( 𝐴 ∈ V → ( ( 𝑥𝐴𝑥𝑛 ) → 𝑛𝐴 ) )
8 7 exlimdv ( 𝐴 ∈ V → ( ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → 𝑛𝐴 ) )
9 8 ralimdv ( 𝐴 ∈ V → ( ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → ∀ 𝑛 ∈ ω 𝑛𝐴 ) )
10 domalom ( ∀ 𝑛 ∈ ω 𝑛𝐴 → ¬ 𝐴 ∈ Fin )
11 9 10 syl6 ( 𝐴 ∈ V → ( ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → ¬ 𝐴 ∈ Fin ) )
12 prcnel ( ¬ 𝐴 ∈ V → ¬ 𝐴 ∈ Fin )
13 12 a1d ( ¬ 𝐴 ∈ V → ( ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → ¬ 𝐴 ∈ Fin ) )
14 11 13 pm2.61i ( ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥𝐴𝑥𝑛 ) → ¬ 𝐴 ∈ Fin )