| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑛 = ∅ → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ ∅ ) ) |
| 2 |
1
|
anbi2d |
⊢ ( 𝑛 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
| 3 |
2
|
exbidv |
⊢ ( 𝑛 = ∅ → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
| 4 |
|
breq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑥 ≈ 𝑛 ↔ 𝑥 ≈ 𝑚 ) ) |
| 5 |
4
|
anbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) ) |
| 6 |
5
|
exbidv |
⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) ) |
| 7 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
| 9 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑛 ↔ 𝑦 ≈ 𝑛 ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑛 = suc 𝑚 → ( 𝑦 ≈ 𝑛 ↔ 𝑦 ≈ suc 𝑚 ) ) |
| 11 |
9 10
|
sylan9bbr |
⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ≈ 𝑛 ↔ 𝑦 ≈ suc 𝑚 ) ) |
| 12 |
8 11
|
anbi12d |
⊢ ( ( 𝑛 = suc 𝑚 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 13 |
12
|
cbvexdvaw |
⊢ ( 𝑛 = suc 𝑚 → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 14 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
| 15 |
|
peano1 |
⊢ ∅ ∈ ω |
| 16 |
|
enrefnn |
⊢ ( ∅ ∈ ω → ∅ ≈ ∅ ) |
| 17 |
15 16
|
ax-mp |
⊢ ∅ ≈ ∅ |
| 18 |
|
0ex |
⊢ ∅ ∈ V |
| 19 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ ∅ ↔ ∅ ≈ ∅ ) ) |
| 21 |
19 20
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ ( ∅ ⊆ 𝐴 ∧ ∅ ≈ ∅ ) ) ) |
| 22 |
18 21
|
spcev |
⊢ ( ( ∅ ⊆ 𝐴 ∧ ∅ ≈ ∅ ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) |
| 23 |
14 17 22
|
mp2an |
⊢ ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) |
| 24 |
23
|
a1i |
⊢ ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) |
| 25 |
|
ssdif0 |
⊢ ( 𝐴 ⊆ 𝑥 ↔ ( 𝐴 ∖ 𝑥 ) = ∅ ) |
| 26 |
|
eqss |
⊢ ( 𝑥 = 𝐴 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) ) |
| 27 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑚 ↔ 𝐴 ≈ 𝑚 ) ) |
| 28 |
27
|
biimpa |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) → 𝐴 ≈ 𝑚 ) |
| 29 |
|
rspe |
⊢ ( ( 𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚 ) → ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) |
| 30 |
28 29
|
sylan2 |
⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) → ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) |
| 31 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑚 ∈ ω 𝐴 ≈ 𝑚 ) |
| 32 |
30 31
|
sylibr |
⊢ ( ( 𝑚 ∈ ω ∧ ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) ) → 𝐴 ∈ Fin ) |
| 33 |
32
|
expcom |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) |
| 34 |
26 33
|
sylanbr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) |
| 35 |
34
|
ex |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑥 ) → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) |
| 36 |
25 35
|
sylan2br |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝐴 ∖ 𝑥 ) = ∅ ) → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) |
| 37 |
36
|
expcom |
⊢ ( ( 𝐴 ∖ 𝑥 ) = ∅ → ( 𝑥 ⊆ 𝐴 → ( 𝑥 ≈ 𝑚 → ( 𝑚 ∈ ω → 𝐴 ∈ Fin ) ) ) ) |
| 38 |
37
|
3impd |
⊢ ( ( 𝐴 ∖ 𝑥 ) = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → 𝐴 ∈ Fin ) ) |
| 39 |
38
|
com12 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ( 𝐴 ∖ 𝑥 ) = ∅ → 𝐴 ∈ Fin ) ) |
| 40 |
39
|
con3d |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ 𝐴 ∈ Fin → ¬ ( 𝐴 ∖ 𝑥 ) = ∅ ) ) |
| 41 |
|
bren |
⊢ ( 𝑥 ≈ 𝑚 ↔ ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) |
| 42 |
|
neq0 |
⊢ ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ) |
| 43 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → 𝑧 ∈ 𝐴 ) |
| 44 |
43
|
snssd |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → { 𝑧 } ⊆ 𝐴 ) |
| 45 |
|
unss |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 46 |
45
|
biimpi |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 47 |
44 46
|
sylan2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 48 |
47
|
ad2ant2r |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
| 49 |
|
vex |
⊢ 𝑧 ∈ V |
| 50 |
|
vex |
⊢ 𝑚 ∈ V |
| 51 |
49 50
|
f1osn |
⊢ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } |
| 52 |
51
|
jctr |
⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } ) ) |
| 53 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ¬ 𝑧 ∈ 𝑥 ) |
| 54 |
|
disjsn |
⊢ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑥 ) |
| 55 |
53 54
|
sylibr |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑥 ∩ { 𝑧 } ) = ∅ ) |
| 56 |
|
nnord |
⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) |
| 57 |
|
orddisj |
⊢ ( Ord 𝑚 → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) |
| 58 |
56 57
|
syl |
⊢ ( 𝑚 ∈ ω → ( 𝑚 ∩ { 𝑚 } ) = ∅ ) |
| 59 |
55 58
|
anim12i |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) ) |
| 60 |
|
f1oun |
⊢ ( ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ { 〈 𝑧 , 𝑚 〉 } : { 𝑧 } –1-1-onto→ { 𝑚 } ) ∧ ( ( 𝑥 ∩ { 𝑧 } ) = ∅ ∧ ( 𝑚 ∩ { 𝑚 } ) = ∅ ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) |
| 61 |
52 59 60
|
syl2an |
⊢ ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) |
| 62 |
|
df-suc |
⊢ suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) |
| 63 |
|
f1oeq3 |
⊢ ( suc 𝑚 = ( 𝑚 ∪ { 𝑚 } ) → ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) ) |
| 64 |
62 63
|
ax-mp |
⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) ) |
| 65 |
|
vex |
⊢ 𝑓 ∈ V |
| 66 |
|
snex |
⊢ { 〈 𝑧 , 𝑚 〉 } ∈ V |
| 67 |
65 66
|
unex |
⊢ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) ∈ V |
| 68 |
|
f1oeq1 |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) → ( 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ↔ ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) ) |
| 69 |
67 68
|
spcev |
⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 → ∃ 𝑔 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) |
| 70 |
|
bren |
⊢ ( ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ↔ ∃ 𝑔 𝑔 : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 ) |
| 71 |
69 70
|
sylibr |
⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ suc 𝑚 → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 72 |
64 71
|
sylbir |
⊢ ( ( 𝑓 ∪ { 〈 𝑧 , 𝑚 〉 } ) : ( 𝑥 ∪ { 𝑧 } ) –1-1-onto→ ( 𝑚 ∪ { 𝑚 } ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 73 |
61 72
|
syl |
⊢ ( ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 74 |
73
|
adantll |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) |
| 75 |
|
vex |
⊢ 𝑥 ∈ V |
| 76 |
|
snex |
⊢ { 𝑧 } ∈ V |
| 77 |
75 76
|
unex |
⊢ ( 𝑥 ∪ { 𝑧 } ) ∈ V |
| 78 |
|
sseq1 |
⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
| 79 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ≈ suc 𝑚 ↔ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) ) |
| 80 |
78 79
|
anbi12d |
⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) ) ) |
| 81 |
77 80
|
spcev |
⊢ ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐴 ∧ ( 𝑥 ∪ { 𝑧 } ) ≈ suc 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) |
| 82 |
48 74 81
|
syl2anc |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) ∧ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) |
| 83 |
82
|
expcom |
⊢ ( ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 84 |
83
|
ex |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 85 |
84
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 86 |
42 85
|
sylbi |
⊢ ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ( 𝑚 ∈ ω → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 87 |
86
|
com13 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : 𝑥 –1-1-onto→ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 88 |
87
|
expcom |
⊢ ( 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 89 |
88
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝑥 –1-1-onto→ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 90 |
41 89
|
sylbi |
⊢ ( 𝑥 ≈ 𝑚 → ( 𝑥 ⊆ 𝐴 → ( 𝑚 ∈ ω → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) ) |
| 91 |
90
|
3imp21 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ ( 𝐴 ∖ 𝑥 ) = ∅ → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 92 |
40 91
|
syld |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ∧ 𝑚 ∈ ω ) → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) |
| 93 |
92
|
3expia |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 94 |
93
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 95 |
94
|
com3l |
⊢ ( 𝑚 ∈ ω → ( ¬ 𝐴 ∈ Fin → ( ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑚 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ suc 𝑚 ) ) ) ) |
| 96 |
3 6 13 24 95
|
finds2 |
⊢ ( 𝑛 ∈ ω → ( ¬ 𝐴 ∈ Fin → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) ) |
| 97 |
96
|
com12 |
⊢ ( ¬ 𝐴 ∈ Fin → ( 𝑛 ∈ ω → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) ) |
| 98 |
97
|
ralrimiv |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑛 ∈ ω ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛 ) ) |