Metamath Proof Explorer


Theorem iunctb

Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)

Ref Expression
Assertion iunctb ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 𝐵 ≼ ω )

Proof

Step Hyp Ref Expression
1 eqid 𝑥𝐴 ( { 𝑥 } × 𝐵 ) = 𝑥𝐴 ( { 𝑥 } × 𝐵 )
2 simpl ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝐴 ≼ ω )
3 ctex ( 𝐴 ≼ ω → 𝐴 ∈ V )
4 3 adantr ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝐴 ∈ V )
5 ovex ( ω ↑m 𝐵 ) ∈ V
6 5 rgenw 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ V
7 iunexg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ V ) → 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ V )
8 4 6 7 sylancl ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ V )
9 acncc AC ω = V
10 8 9 eleqtrrdi ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ AC ω )
11 acndom ( 𝐴 ≼ ω → ( 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ AC ω → 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 ) )
12 2 10 11 sylc ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 ( ω ↑m 𝐵 ) ∈ AC 𝐴 )
13 simpr ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → ∀ 𝑥𝐴 𝐵 ≼ ω )
14 omex ω ∈ V
15 xpdom1g ( ( ω ∈ V ∧ 𝐴 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) )
16 14 2 15 sylancr ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ( ω × ω ) )
17 xpomen ( ω × ω ) ≈ ω
18 domentr ( ( ( 𝐴 × ω ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝐴 × ω ) ≼ ω )
19 16 17 18 sylancl ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ≼ ω )
20 ctex ( 𝐵 ≼ ω → 𝐵 ∈ V )
21 20 ralimi ( ∀ 𝑥𝐴 𝐵 ≼ ω → ∀ 𝑥𝐴 𝐵 ∈ V )
22 iunexg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵 ∈ V ) → 𝑥𝐴 𝐵 ∈ V )
23 3 21 22 syl2an ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 𝐵 ∈ V )
24 omelon ω ∈ On
25 onenon ( ω ∈ On → ω ∈ dom card )
26 24 25 ax-mp ω ∈ dom card
27 numacn ( 𝑥𝐴 𝐵 ∈ V → ( ω ∈ dom card → ω ∈ AC 𝑥𝐴 𝐵 ) )
28 23 26 27 mpisyl ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → ω ∈ AC 𝑥𝐴 𝐵 )
29 acndom2 ( ( 𝐴 × ω ) ≼ ω → ( ω ∈ AC 𝑥𝐴 𝐵 → ( 𝐴 × ω ) ∈ AC 𝑥𝐴 𝐵 ) )
30 19 28 29 sylc ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → ( 𝐴 × ω ) ∈ AC 𝑥𝐴 𝐵 )
31 1 12 13 30 iundomg ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 𝐵 ≼ ( 𝐴 × ω ) )
32 domtr ( ( 𝑥𝐴 𝐵 ≼ ( 𝐴 × ω ) ∧ ( 𝐴 × ω ) ≼ ω ) → 𝑥𝐴 𝐵 ≼ ω )
33 31 19 32 syl2anc ( ( 𝐴 ≼ ω ∧ ∀ 𝑥𝐴 𝐵 ≼ ω ) → 𝑥𝐴 𝐵 ≼ ω )