Metamath Proof Explorer


Theorem iunctb

Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)

Ref Expression
Assertion iunctb AωxABωxABω

Proof

Step Hyp Ref Expression
1 eqid xAx×B=xAx×B
2 simpl AωxABωAω
3 ctex AωAV
4 3 adantr AωxABωAV
5 ovex ωBV
6 5 rgenw xAωBV
7 iunexg AVxAωBVxAωBV
8 4 6 7 sylancl AωxABωxAωBV
9 acncc AC_ω=V
10 8 9 eleqtrrdi AωxABωxAωBAC_ω
11 acndom AωxAωBAC_ωxAωBAC_A
12 2 10 11 sylc AωxABωxAωBAC_A
13 simpr AωxABωxABω
14 omex ωV
15 xpdom1g ωVAωA×ωω×ω
16 14 2 15 sylancr AωxABωA×ωω×ω
17 xpomen ω×ωω
18 domentr A×ωω×ωω×ωωA×ωω
19 16 17 18 sylancl AωxABωA×ωω
20 ctex BωBV
21 20 ralimi xABωxABV
22 iunexg AVxABVxABV
23 3 21 22 syl2an AωxABωxABV
24 omelon ωOn
25 onenon ωOnωdomcard
26 24 25 ax-mp ωdomcard
27 numacn xABVωdomcardωAC_xAB
28 23 26 27 mpisyl AωxABωωAC_xAB
29 acndom2 A×ωωωAC_xABA×ωAC_xAB
30 19 28 29 sylc AωxABωA×ωAC_xAB
31 1 12 13 30 iundomg AωxABωxABA×ω
32 domtr xABA×ωA×ωωxABω
33 31 19 32 syl2anc AωxABωxABω