Description: The countable union of countable sets is countable (indexed union version of unictb ). (Contributed by Mario Carneiro, 18-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | iunctb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | simpl | |
|
3 | ctex | |
|
4 | 3 | adantr | |
5 | ovex | |
|
6 | 5 | rgenw | |
7 | iunexg | |
|
8 | 4 6 7 | sylancl | |
9 | acncc | |
|
10 | 8 9 | eleqtrrdi | |
11 | acndom | |
|
12 | 2 10 11 | sylc | |
13 | simpr | |
|
14 | omex | |
|
15 | xpdom1g | |
|
16 | 14 2 15 | sylancr | |
17 | xpomen | |
|
18 | domentr | |
|
19 | 16 17 18 | sylancl | |
20 | ctex | |
|
21 | 20 | ralimi | |
22 | iunexg | |
|
23 | 3 21 22 | syl2an | |
24 | omelon | |
|
25 | onenon | |
|
26 | 24 25 | ax-mp | |
27 | numacn | |
|
28 | 23 26 27 | mpisyl | |
29 | acndom2 | |
|
30 | 19 28 29 | sylc | |
31 | 1 12 13 30 | iundomg | |
32 | domtr | |
|
33 | 31 19 32 | syl2anc | |