| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lambert0.1 |
|- R = `' ( x e. CC |-> ( x x. ( exp ` x ) ) ) |
| 2 |
|
c0ex |
|- 0 e. _V |
| 3 |
|
eqcom |
|- ( x = 0 <-> 0 = x ) |
| 4 |
3
|
biimpi |
|- ( x = 0 -> 0 = x ) |
| 5 |
|
0cnd |
|- ( x = 0 -> 0 e. CC ) |
| 6 |
4 5
|
eqeltrrd |
|- ( x = 0 -> x e. CC ) |
| 7 |
6
|
adantr |
|- ( ( x = 0 /\ y = 0 ) -> x e. CC ) |
| 8 |
|
simpr |
|- ( ( x = 0 /\ y = 0 ) -> y = 0 ) |
| 9 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
9 10
|
eqeltri |
|- ( exp ` 0 ) e. CC |
| 12 |
11
|
mul02i |
|- ( 0 x. ( exp ` 0 ) ) = 0 |
| 13 |
4
|
fveq2d |
|- ( x = 0 -> ( exp ` 0 ) = ( exp ` x ) ) |
| 14 |
4 13
|
oveq12d |
|- ( x = 0 -> ( 0 x. ( exp ` 0 ) ) = ( x x. ( exp ` x ) ) ) |
| 15 |
12 14
|
eqtr3id |
|- ( x = 0 -> 0 = ( x x. ( exp ` x ) ) ) |
| 16 |
15
|
adantr |
|- ( ( x = 0 /\ y = 0 ) -> 0 = ( x x. ( exp ` x ) ) ) |
| 17 |
8 16
|
eqtrd |
|- ( ( x = 0 /\ y = 0 ) -> y = ( x x. ( exp ` x ) ) ) |
| 18 |
7 17
|
jca |
|- ( ( x = 0 /\ y = 0 ) -> ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) ) |
| 19 |
|
tbtru |
|- ( ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) <-> ( ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) <-> T. ) ) |
| 20 |
18 19
|
sylib |
|- ( ( x = 0 /\ y = 0 ) -> ( ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) <-> T. ) ) |
| 21 |
|
eqid |
|- { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } = { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } |
| 22 |
2 2 20 21
|
braba |
|- ( 0 { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } 0 <-> T. ) |
| 23 |
|
tbtru |
|- ( 0 { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } 0 <-> ( 0 { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } 0 <-> T. ) ) |
| 24 |
22 23
|
mpbir |
|- 0 { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } 0 |
| 25 |
|
df-mpt |
|- ( x e. CC |-> ( x x. ( exp ` x ) ) ) = { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } |
| 26 |
25
|
breqi |
|- ( 0 ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 <-> 0 { <. x , y >. | ( x e. CC /\ y = ( x x. ( exp ` x ) ) ) } 0 ) |
| 27 |
24 26
|
mpbir |
|- 0 ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 |
| 28 |
2 2
|
brcnv |
|- ( 0 `' ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 <-> 0 ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 ) |
| 29 |
27 28
|
mpbir |
|- 0 `' ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 |
| 30 |
1
|
breqi |
|- ( 0 R 0 <-> 0 `' ( x e. CC |-> ( x x. ( exp ` x ) ) ) 0 ) |
| 31 |
29 30
|
mpbir |
|- 0 R 0 |