Metamath Proof Explorer


Theorem lambert0

Description: A value of Lambert W (product logarithm) function at zero. (Contributed by Ender Ting, 13-Nov-2025)

Ref Expression
Hypothesis lambert0.1 R = x x e x -1
Assertion lambert0 0 R 0

Proof

Step Hyp Ref Expression
1 lambert0.1 R = x x e x -1
2 c0ex 0 V
3 eqcom x = 0 0 = x
4 3 biimpi x = 0 0 = x
5 0cnd x = 0 0
6 4 5 eqeltrrd x = 0 x
7 6 adantr x = 0 y = 0 x
8 simpr x = 0 y = 0 y = 0
9 ef0 e 0 = 1
10 ax-1cn 1
11 9 10 eqeltri e 0
12 11 mul02i 0 e 0 = 0
13 4 fveq2d x = 0 e 0 = e x
14 4 13 oveq12d x = 0 0 e 0 = x e x
15 12 14 eqtr3id x = 0 0 = x e x
16 15 adantr x = 0 y = 0 0 = x e x
17 8 16 eqtrd x = 0 y = 0 y = x e x
18 7 17 jca x = 0 y = 0 x y = x e x
19 tbtru x y = x e x x y = x e x
20 18 19 sylib x = 0 y = 0 x y = x e x
21 eqid x y | x y = x e x = x y | x y = x e x
22 2 2 20 21 braba 0 x y | x y = x e x 0
23 tbtru 0 x y | x y = x e x 0 0 x y | x y = x e x 0
24 22 23 mpbir 0 x y | x y = x e x 0
25 df-mpt x x e x = x y | x y = x e x
26 25 breqi 0 x x e x 0 0 x y | x y = x e x 0
27 24 26 mpbir 0 x x e x 0
28 2 2 brcnv 0 x x e x -1 0 0 x x e x 0
29 27 28 mpbir 0 x x e x -1 0
30 1 breqi 0 R 0 0 x x e x -1 0
31 29 30 mpbir 0 R 0