Metamath Proof Explorer


Theorem lamberte

Description: A value of Lambert W (product logarithm) function at _e . (Contributed by Ender Ting, 13-Nov-2025)

Ref Expression
Hypothesis lamberte.1 R = x x e x -1
Assertion lamberte e R 1

Proof

Step Hyp Ref Expression
1 lamberte.1 R = x x e x -1
2 1ex 1 V
3 epr e +
4 3 elexi e V
5 eqcom x = 1 1 = x
6 5 biimpi x = 1 1 = x
7 ax-1cn 1
8 6 7 eqeltrrdi x = 1 x
9 8 adantr x = 1 y = e x
10 simpr x = 1 y = e y = e
11 df-e e = e 1
12 rpssre +
13 ax-resscn
14 12 13 sstri +
15 14 3 sselii e
16 11 15 eqeltrri e 1
17 16 mullidi 1 e 1 = e 1
18 17 11 eqtr4i 1 e 1 = e
19 6 fveq2d x = 1 e 1 = e x
20 6 19 oveq12d x = 1 1 e 1 = x e x
21 18 20 eqtr3id x = 1 e = x e x
22 21 adantr x = 1 y = e e = x e x
23 10 22 eqtrd x = 1 y = e y = x e x
24 9 23 jca x = 1 y = e x y = x e x
25 tbtru x y = x e x x y = x e x
26 24 25 sylib x = 1 y = e x y = x e x
27 eqid x y | x y = x e x = x y | x y = x e x
28 2 4 26 27 braba 1 x y | x y = x e x e
29 tbtru 1 x y | x y = x e x e 1 x y | x y = x e x e
30 28 29 mpbir 1 x y | x y = x e x e
31 df-mpt x x e x = x y | x y = x e x
32 31 breqi 1 x x e x e 1 x y | x y = x e x e
33 30 32 mpbir 1 x x e x e
34 4 2 brcnv e x x e x -1 1 1 x x e x e
35 33 34 mpbir e x x e x -1 1
36 1 breqi e R 1 e x x e x -1 1
37 35 36 mpbir e R 1