Metamath Proof Explorer


Theorem cjnpoly

Description: Complex conjugation operator is not a polynomial with complex coefficients. Indeed; if it was, then multiplying x conjugate by x itself and adding 1 would yield a nowhere-zero non-constant polynomial, contrary to the fta . (Contributed by Ender Ting, 8-Dec-2025)

Ref Expression
Assertion cjnpoly ¬ * Poly

Proof

Step Hyp Ref Expression
1 cnex V
2 1ex 1 V
3 fconstmpt × 1 = x 1
4 2 3 fnmpti × 1 Fn
5 fnresi I Fn
6 df-idp X p = I
7 6 fneq1i X p Fn I Fn
8 5 7 mpbir X p Fn
9 8 a1i X p Fn
10 cjf * :
11 ffn * : * Fn
12 10 11 ax-mp * Fn
13 12 a1i * Fn
14 1 a1i V
15 inidm =
16 9 13 14 14 15 offn X p × f * Fn
17 16 mptru X p × f * Fn
18 fnfvof × 1 Fn X p × f * Fn V x × 1 + f X p × f * x = × 1 x + X p × f * x
19 4 17 18 mpanl12 V x × 1 + f X p × f * x = × 1 x + X p × f * x
20 1 19 mpan x × 1 + f X p × f * x = × 1 x + X p × f * x
21 2 fvconst2 x × 1 x = 1
22 21 oveq1d x × 1 x + X p × f * x = 1 + X p × f * x
23 20 22 eqtrd x × 1 + f X p × f * x = 1 + X p × f * x
24 fnfvof X p Fn * Fn V x X p × f * x = X p x x
25 8 12 24 mpanl12 V x X p × f * x = X p x x
26 1 25 mpan x X p × f * x = X p x x
27 6 fveq1i X p x = I x
28 fvres x I x = I x
29 27 28 eqtrid x X p x = I x
30 fvi x I x = x
31 29 30 eqtrd x X p x = x
32 31 oveq1d x X p x x = x x
33 26 32 eqtrd x X p × f * x = x x
34 33 oveq2d x 1 + X p × f * x = 1 + x x
35 23 34 eqtrd x × 1 + f X p × f * x = 1 + x x
36 1red x 1
37 cjmulrcl x x x
38 0lt1 0 < 1
39 38 a1i x 0 < 1
40 cjmulge0 x 0 x x
41 36 37 39 40 addgtge0d x 0 < 1 + x x
42 41 gt0ne0d x 1 + x x 0
43 35 42 eqnetrd x × 1 + f X p × f * x 0
44 43 neneqd x ¬ × 1 + f X p × f * x = 0
45 44 nrex ¬ x × 1 + f X p × f * x = 0
46 ssid
47 ax-1cn 1
48 plyconst 1 × 1 Poly
49 46 47 48 mp2an × 1 Poly
50 plyid 1 X p Poly
51 46 47 50 mp2an X p Poly
52 plymulcl X p Poly * Poly X p × f * Poly
53 51 52 mpan * Poly X p × f * Poly
54 plyaddcl × 1 Poly X p × f * Poly × 1 + f X p × f * Poly
55 49 53 54 sylancr * Poly × 1 + f X p × f * Poly
56 dgrcl * Poly deg * 0
57 nn0p1nn deg * 0 deg * + 1
58 nn0cn deg * 0 deg *
59 1cnd deg * 0 1
60 58 59 addcomd deg * 0 deg * + 1 = 1 + deg *
61 60 eleq1d deg * 0 deg * + 1 1 + deg *
62 57 61 mpbid deg * 0 1 + deg *
63 56 62 syl * Poly 1 + deg *
64 1re 1
65 cjre 1 1 = 1
66 64 65 ax-mp 1 = 1
67 ax-1ne0 1 0
68 66 67 eqnetri 1 0
69 ne0p 1 1 0 * 0 𝑝
70 47 68 69 mp2an * 0 𝑝
71 6 fveq1i X p 1 = I 1
72 fvres 1 I 1 = I 1
73 47 72 ax-mp I 1 = I 1
74 71 73 eqtri X p 1 = I 1
75 fvi 1 V I 1 = 1
76 2 75 ax-mp I 1 = 1
77 74 76 eqtri X p 1 = 1
78 77 67 eqnetri X p 1 0
79 ne0p 1 X p 1 0 X p 0 𝑝
80 47 78 79 mp2an X p 0 𝑝
81 51 80 pm3.2i X p Poly X p 0 𝑝
82 dgrid deg X p = 1
83 82 eqcomi 1 = deg X p
84 eqid deg * = deg *
85 83 84 dgrmul X p Poly X p 0 𝑝 * Poly * 0 𝑝 deg X p × f * = 1 + deg *
86 81 85 mpan * Poly * 0 𝑝 deg X p × f * = 1 + deg *
87 70 86 mpan2 * Poly deg X p × f * = 1 + deg *
88 87 eleq1d * Poly deg X p × f * 1 + deg *
89 63 88 mpbird * Poly deg X p × f *
90 49 a1i * Poly × 1 Poly
91 89 nngt0d * Poly 0 < deg X p × f *
92 0dgr 1 deg × 1 = 0
93 47 92 ax-mp deg × 1 = 0
94 93 eqcomi 0 = deg × 1
95 eqid deg X p × f * = deg X p × f *
96 94 95 dgradd2 × 1 Poly X p × f * Poly 0 < deg X p × f * deg × 1 + f X p × f * = deg X p × f *
97 90 53 91 96 syl3anc * Poly deg × 1 + f X p × f * = deg X p × f *
98 97 eleq1d * Poly deg × 1 + f X p × f * deg X p × f *
99 98 biimprd * Poly deg X p × f * deg × 1 + f X p × f *
100 89 99 mpd * Poly deg × 1 + f X p × f *
101 fta × 1 + f X p × f * Poly deg × 1 + f X p × f * x × 1 + f X p × f * x = 0
102 55 100 101 syl2anc * Poly x × 1 + f X p × f * x = 0
103 45 102 mto ¬ * Poly