| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
|- CC e. _V |
| 2 |
|
1ex |
|- 1 e. _V |
| 3 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
| 4 |
2 3
|
fnmpti |
|- ( CC X. { 1 } ) Fn CC |
| 5 |
|
fnresi |
|- ( _I |` CC ) Fn CC |
| 6 |
|
df-idp |
|- Xp = ( _I |` CC ) |
| 7 |
6
|
fneq1i |
|- ( Xp Fn CC <-> ( _I |` CC ) Fn CC ) |
| 8 |
5 7
|
mpbir |
|- Xp Fn CC |
| 9 |
8
|
a1i |
|- ( T. -> Xp Fn CC ) |
| 10 |
|
cjf |
|- * : CC --> CC |
| 11 |
|
ffn |
|- ( * : CC --> CC -> * Fn CC ) |
| 12 |
10 11
|
ax-mp |
|- * Fn CC |
| 13 |
12
|
a1i |
|- ( T. -> * Fn CC ) |
| 14 |
1
|
a1i |
|- ( T. -> CC e. _V ) |
| 15 |
|
inidm |
|- ( CC i^i CC ) = CC |
| 16 |
9 13 14 14 15
|
offn |
|- ( T. -> ( Xp oF x. * ) Fn CC ) |
| 17 |
16
|
mptru |
|- ( Xp oF x. * ) Fn CC |
| 18 |
|
fnfvof |
|- ( ( ( ( CC X. { 1 } ) Fn CC /\ ( Xp oF x. * ) Fn CC ) /\ ( CC e. _V /\ x e. CC ) ) -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = ( ( ( CC X. { 1 } ) ` x ) + ( ( Xp oF x. * ) ` x ) ) ) |
| 19 |
4 17 18
|
mpanl12 |
|- ( ( CC e. _V /\ x e. CC ) -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = ( ( ( CC X. { 1 } ) ` x ) + ( ( Xp oF x. * ) ` x ) ) ) |
| 20 |
1 19
|
mpan |
|- ( x e. CC -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = ( ( ( CC X. { 1 } ) ` x ) + ( ( Xp oF x. * ) ` x ) ) ) |
| 21 |
2
|
fvconst2 |
|- ( x e. CC -> ( ( CC X. { 1 } ) ` x ) = 1 ) |
| 22 |
21
|
oveq1d |
|- ( x e. CC -> ( ( ( CC X. { 1 } ) ` x ) + ( ( Xp oF x. * ) ` x ) ) = ( 1 + ( ( Xp oF x. * ) ` x ) ) ) |
| 23 |
20 22
|
eqtrd |
|- ( x e. CC -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = ( 1 + ( ( Xp oF x. * ) ` x ) ) ) |
| 24 |
|
fnfvof |
|- ( ( ( Xp Fn CC /\ * Fn CC ) /\ ( CC e. _V /\ x e. CC ) ) -> ( ( Xp oF x. * ) ` x ) = ( ( Xp ` x ) x. ( * ` x ) ) ) |
| 25 |
8 12 24
|
mpanl12 |
|- ( ( CC e. _V /\ x e. CC ) -> ( ( Xp oF x. * ) ` x ) = ( ( Xp ` x ) x. ( * ` x ) ) ) |
| 26 |
1 25
|
mpan |
|- ( x e. CC -> ( ( Xp oF x. * ) ` x ) = ( ( Xp ` x ) x. ( * ` x ) ) ) |
| 27 |
6
|
fveq1i |
|- ( Xp ` x ) = ( ( _I |` CC ) ` x ) |
| 28 |
|
fvres |
|- ( x e. CC -> ( ( _I |` CC ) ` x ) = ( _I ` x ) ) |
| 29 |
27 28
|
eqtrid |
|- ( x e. CC -> ( Xp ` x ) = ( _I ` x ) ) |
| 30 |
|
fvi |
|- ( x e. CC -> ( _I ` x ) = x ) |
| 31 |
29 30
|
eqtrd |
|- ( x e. CC -> ( Xp ` x ) = x ) |
| 32 |
31
|
oveq1d |
|- ( x e. CC -> ( ( Xp ` x ) x. ( * ` x ) ) = ( x x. ( * ` x ) ) ) |
| 33 |
26 32
|
eqtrd |
|- ( x e. CC -> ( ( Xp oF x. * ) ` x ) = ( x x. ( * ` x ) ) ) |
| 34 |
33
|
oveq2d |
|- ( x e. CC -> ( 1 + ( ( Xp oF x. * ) ` x ) ) = ( 1 + ( x x. ( * ` x ) ) ) ) |
| 35 |
23 34
|
eqtrd |
|- ( x e. CC -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = ( 1 + ( x x. ( * ` x ) ) ) ) |
| 36 |
|
1red |
|- ( x e. CC -> 1 e. RR ) |
| 37 |
|
cjmulrcl |
|- ( x e. CC -> ( x x. ( * ` x ) ) e. RR ) |
| 38 |
|
0lt1 |
|- 0 < 1 |
| 39 |
38
|
a1i |
|- ( x e. CC -> 0 < 1 ) |
| 40 |
|
cjmulge0 |
|- ( x e. CC -> 0 <_ ( x x. ( * ` x ) ) ) |
| 41 |
36 37 39 40
|
addgtge0d |
|- ( x e. CC -> 0 < ( 1 + ( x x. ( * ` x ) ) ) ) |
| 42 |
41
|
gt0ne0d |
|- ( x e. CC -> ( 1 + ( x x. ( * ` x ) ) ) =/= 0 ) |
| 43 |
35 42
|
eqnetrd |
|- ( x e. CC -> ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) =/= 0 ) |
| 44 |
43
|
neneqd |
|- ( x e. CC -> -. ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = 0 ) |
| 45 |
44
|
nrex |
|- -. E. x e. CC ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = 0 |
| 46 |
|
ssid |
|- CC C_ CC |
| 47 |
|
ax-1cn |
|- 1 e. CC |
| 48 |
|
plyconst |
|- ( ( CC C_ CC /\ 1 e. CC ) -> ( CC X. { 1 } ) e. ( Poly ` CC ) ) |
| 49 |
46 47 48
|
mp2an |
|- ( CC X. { 1 } ) e. ( Poly ` CC ) |
| 50 |
|
plyid |
|- ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) |
| 51 |
46 47 50
|
mp2an |
|- Xp e. ( Poly ` CC ) |
| 52 |
|
plymulcl |
|- ( ( Xp e. ( Poly ` CC ) /\ * e. ( Poly ` CC ) ) -> ( Xp oF x. * ) e. ( Poly ` CC ) ) |
| 53 |
51 52
|
mpan |
|- ( * e. ( Poly ` CC ) -> ( Xp oF x. * ) e. ( Poly ` CC ) ) |
| 54 |
|
plyaddcl |
|- ( ( ( CC X. { 1 } ) e. ( Poly ` CC ) /\ ( Xp oF x. * ) e. ( Poly ` CC ) ) -> ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) e. ( Poly ` CC ) ) |
| 55 |
49 53 54
|
sylancr |
|- ( * e. ( Poly ` CC ) -> ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) e. ( Poly ` CC ) ) |
| 56 |
|
dgrcl |
|- ( * e. ( Poly ` CC ) -> ( deg ` * ) e. NN0 ) |
| 57 |
|
nn0p1nn |
|- ( ( deg ` * ) e. NN0 -> ( ( deg ` * ) + 1 ) e. NN ) |
| 58 |
|
nn0cn |
|- ( ( deg ` * ) e. NN0 -> ( deg ` * ) e. CC ) |
| 59 |
|
1cnd |
|- ( ( deg ` * ) e. NN0 -> 1 e. CC ) |
| 60 |
58 59
|
addcomd |
|- ( ( deg ` * ) e. NN0 -> ( ( deg ` * ) + 1 ) = ( 1 + ( deg ` * ) ) ) |
| 61 |
60
|
eleq1d |
|- ( ( deg ` * ) e. NN0 -> ( ( ( deg ` * ) + 1 ) e. NN <-> ( 1 + ( deg ` * ) ) e. NN ) ) |
| 62 |
57 61
|
mpbid |
|- ( ( deg ` * ) e. NN0 -> ( 1 + ( deg ` * ) ) e. NN ) |
| 63 |
56 62
|
syl |
|- ( * e. ( Poly ` CC ) -> ( 1 + ( deg ` * ) ) e. NN ) |
| 64 |
|
1re |
|- 1 e. RR |
| 65 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
| 66 |
64 65
|
ax-mp |
|- ( * ` 1 ) = 1 |
| 67 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 68 |
66 67
|
eqnetri |
|- ( * ` 1 ) =/= 0 |
| 69 |
|
ne0p |
|- ( ( 1 e. CC /\ ( * ` 1 ) =/= 0 ) -> * =/= 0p ) |
| 70 |
47 68 69
|
mp2an |
|- * =/= 0p |
| 71 |
6
|
fveq1i |
|- ( Xp ` 1 ) = ( ( _I |` CC ) ` 1 ) |
| 72 |
|
fvres |
|- ( 1 e. CC -> ( ( _I |` CC ) ` 1 ) = ( _I ` 1 ) ) |
| 73 |
47 72
|
ax-mp |
|- ( ( _I |` CC ) ` 1 ) = ( _I ` 1 ) |
| 74 |
71 73
|
eqtri |
|- ( Xp ` 1 ) = ( _I ` 1 ) |
| 75 |
|
fvi |
|- ( 1 e. _V -> ( _I ` 1 ) = 1 ) |
| 76 |
2 75
|
ax-mp |
|- ( _I ` 1 ) = 1 |
| 77 |
74 76
|
eqtri |
|- ( Xp ` 1 ) = 1 |
| 78 |
77 67
|
eqnetri |
|- ( Xp ` 1 ) =/= 0 |
| 79 |
|
ne0p |
|- ( ( 1 e. CC /\ ( Xp ` 1 ) =/= 0 ) -> Xp =/= 0p ) |
| 80 |
47 78 79
|
mp2an |
|- Xp =/= 0p |
| 81 |
51 80
|
pm3.2i |
|- ( Xp e. ( Poly ` CC ) /\ Xp =/= 0p ) |
| 82 |
|
dgrid |
|- ( deg ` Xp ) = 1 |
| 83 |
82
|
eqcomi |
|- 1 = ( deg ` Xp ) |
| 84 |
|
eqid |
|- ( deg ` * ) = ( deg ` * ) |
| 85 |
83 84
|
dgrmul |
|- ( ( ( Xp e. ( Poly ` CC ) /\ Xp =/= 0p ) /\ ( * e. ( Poly ` CC ) /\ * =/= 0p ) ) -> ( deg ` ( Xp oF x. * ) ) = ( 1 + ( deg ` * ) ) ) |
| 86 |
81 85
|
mpan |
|- ( ( * e. ( Poly ` CC ) /\ * =/= 0p ) -> ( deg ` ( Xp oF x. * ) ) = ( 1 + ( deg ` * ) ) ) |
| 87 |
70 86
|
mpan2 |
|- ( * e. ( Poly ` CC ) -> ( deg ` ( Xp oF x. * ) ) = ( 1 + ( deg ` * ) ) ) |
| 88 |
87
|
eleq1d |
|- ( * e. ( Poly ` CC ) -> ( ( deg ` ( Xp oF x. * ) ) e. NN <-> ( 1 + ( deg ` * ) ) e. NN ) ) |
| 89 |
63 88
|
mpbird |
|- ( * e. ( Poly ` CC ) -> ( deg ` ( Xp oF x. * ) ) e. NN ) |
| 90 |
49
|
a1i |
|- ( * e. ( Poly ` CC ) -> ( CC X. { 1 } ) e. ( Poly ` CC ) ) |
| 91 |
89
|
nngt0d |
|- ( * e. ( Poly ` CC ) -> 0 < ( deg ` ( Xp oF x. * ) ) ) |
| 92 |
|
0dgr |
|- ( 1 e. CC -> ( deg ` ( CC X. { 1 } ) ) = 0 ) |
| 93 |
47 92
|
ax-mp |
|- ( deg ` ( CC X. { 1 } ) ) = 0 |
| 94 |
93
|
eqcomi |
|- 0 = ( deg ` ( CC X. { 1 } ) ) |
| 95 |
|
eqid |
|- ( deg ` ( Xp oF x. * ) ) = ( deg ` ( Xp oF x. * ) ) |
| 96 |
94 95
|
dgradd2 |
|- ( ( ( CC X. { 1 } ) e. ( Poly ` CC ) /\ ( Xp oF x. * ) e. ( Poly ` CC ) /\ 0 < ( deg ` ( Xp oF x. * ) ) ) -> ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) = ( deg ` ( Xp oF x. * ) ) ) |
| 97 |
90 53 91 96
|
syl3anc |
|- ( * e. ( Poly ` CC ) -> ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) = ( deg ` ( Xp oF x. * ) ) ) |
| 98 |
97
|
eleq1d |
|- ( * e. ( Poly ` CC ) -> ( ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) e. NN <-> ( deg ` ( Xp oF x. * ) ) e. NN ) ) |
| 99 |
98
|
biimprd |
|- ( * e. ( Poly ` CC ) -> ( ( deg ` ( Xp oF x. * ) ) e. NN -> ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) e. NN ) ) |
| 100 |
89 99
|
mpd |
|- ( * e. ( Poly ` CC ) -> ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) e. NN ) |
| 101 |
|
fta |
|- ( ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) e. ( Poly ` CC ) /\ ( deg ` ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ) e. NN ) -> E. x e. CC ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = 0 ) |
| 102 |
55 100 101
|
syl2anc |
|- ( * e. ( Poly ` CC ) -> E. x e. CC ( ( ( CC X. { 1 } ) oF + ( Xp oF x. * ) ) ` x ) = 0 ) |
| 103 |
45 102
|
mto |
|- -. * e. ( Poly ` CC ) |