Metamath Proof Explorer


Theorem cjnpoly

Description: Complex conjugation operator is not a polynomial with complex coefficients. Indeed; if it was, then multiplying x conjugate by x itself and adding 1 would yield a nowhere-zero non-constant polynomial, contrary to the fta . (Contributed by Ender Ting, 8-Dec-2025)

Ref Expression
Assertion cjnpoly ¬ ∗ ∈ ( Poly ‘ ℂ )

Proof

Step Hyp Ref Expression
1 cnex ℂ ∈ V
2 1ex 1 ∈ V
3 fconstmpt ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 )
4 2 3 fnmpti ( ℂ × { 1 } ) Fn ℂ
5 fnresi ( I ↾ ℂ ) Fn ℂ
6 df-idp Xp = ( I ↾ ℂ )
7 6 fneq1i ( Xp Fn ℂ ↔ ( I ↾ ℂ ) Fn ℂ )
8 5 7 mpbir Xp Fn ℂ
9 8 a1i ( ⊤ → Xp Fn ℂ )
10 cjf ∗ : ℂ ⟶ ℂ
11 ffn ( ∗ : ℂ ⟶ ℂ → ∗ Fn ℂ )
12 10 11 ax-mp ∗ Fn ℂ
13 12 a1i ( ⊤ → ∗ Fn ℂ )
14 1 a1i ( ⊤ → ℂ ∈ V )
15 inidm ( ℂ ∩ ℂ ) = ℂ
16 9 13 14 14 15 offn ( ⊤ → ( Xpf · ∗ ) Fn ℂ )
17 16 mptru ( Xpf · ∗ ) Fn ℂ
18 fnfvof ( ( ( ( ℂ × { 1 } ) Fn ℂ ∧ ( Xpf · ∗ ) Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) ) → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) )
19 4 17 18 mpanl12 ( ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) )
20 1 19 mpan ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) )
21 2 fvconst2 ( 𝑥 ∈ ℂ → ( ( ℂ × { 1 } ) ‘ 𝑥 ) = 1 )
22 21 oveq1d ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) = ( 1 + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) )
23 20 22 eqtrd ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = ( 1 + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) )
24 fnfvof ( ( ( Xp Fn ℂ ∧ ∗ Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) ) → ( ( Xpf · ∗ ) ‘ 𝑥 ) = ( ( Xp𝑥 ) · ( ∗ ‘ 𝑥 ) ) )
25 8 12 24 mpanl12 ( ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) → ( ( Xpf · ∗ ) ‘ 𝑥 ) = ( ( Xp𝑥 ) · ( ∗ ‘ 𝑥 ) ) )
26 1 25 mpan ( 𝑥 ∈ ℂ → ( ( Xpf · ∗ ) ‘ 𝑥 ) = ( ( Xp𝑥 ) · ( ∗ ‘ 𝑥 ) ) )
27 6 fveq1i ( Xp𝑥 ) = ( ( I ↾ ℂ ) ‘ 𝑥 )
28 fvres ( 𝑥 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑥 ) = ( I ‘ 𝑥 ) )
29 27 28 eqtrid ( 𝑥 ∈ ℂ → ( Xp𝑥 ) = ( I ‘ 𝑥 ) )
30 fvi ( 𝑥 ∈ ℂ → ( I ‘ 𝑥 ) = 𝑥 )
31 29 30 eqtrd ( 𝑥 ∈ ℂ → ( Xp𝑥 ) = 𝑥 )
32 31 oveq1d ( 𝑥 ∈ ℂ → ( ( Xp𝑥 ) · ( ∗ ‘ 𝑥 ) ) = ( 𝑥 · ( ∗ ‘ 𝑥 ) ) )
33 26 32 eqtrd ( 𝑥 ∈ ℂ → ( ( Xpf · ∗ ) ‘ 𝑥 ) = ( 𝑥 · ( ∗ ‘ 𝑥 ) ) )
34 33 oveq2d ( 𝑥 ∈ ℂ → ( 1 + ( ( Xpf · ∗ ) ‘ 𝑥 ) ) = ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
35 23 34 eqtrd ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
36 1red ( 𝑥 ∈ ℂ → 1 ∈ ℝ )
37 cjmulrcl ( 𝑥 ∈ ℂ → ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ )
38 0lt1 0 < 1
39 38 a1i ( 𝑥 ∈ ℂ → 0 < 1 )
40 cjmulge0 ( 𝑥 ∈ ℂ → 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) )
41 36 37 39 40 addgtge0d ( 𝑥 ∈ ℂ → 0 < ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
42 41 gt0ne0d ( 𝑥 ∈ ℂ → ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ≠ 0 )
43 35 42 eqnetrd ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) ≠ 0 )
44 43 neneqd ( 𝑥 ∈ ℂ → ¬ ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = 0 )
45 44 nrex ¬ ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = 0
46 ssid ℂ ⊆ ℂ
47 ax-1cn 1 ∈ ℂ
48 plyconst ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) )
49 46 47 48 mp2an ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ )
50 plyid ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) )
51 46 47 50 mp2an Xp ∈ ( Poly ‘ ℂ )
52 plymulcl ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ∗ ∈ ( Poly ‘ ℂ ) ) → ( Xpf · ∗ ) ∈ ( Poly ‘ ℂ ) )
53 51 52 mpan ( ∗ ∈ ( Poly ‘ ℂ ) → ( Xpf · ∗ ) ∈ ( Poly ‘ ℂ ) )
54 plyaddcl ( ( ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ∧ ( Xpf · ∗ ) ∈ ( Poly ‘ ℂ ) ) → ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ∈ ( Poly ‘ ℂ ) )
55 49 53 54 sylancr ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ∈ ( Poly ‘ ℂ ) )
56 dgrcl ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ∗ ) ∈ ℕ0 )
57 nn0p1nn ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( deg ‘ ∗ ) + 1 ) ∈ ℕ )
58 nn0cn ( ( deg ‘ ∗ ) ∈ ℕ0 → ( deg ‘ ∗ ) ∈ ℂ )
59 1cnd ( ( deg ‘ ∗ ) ∈ ℕ0 → 1 ∈ ℂ )
60 58 59 addcomd ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( deg ‘ ∗ ) + 1 ) = ( 1 + ( deg ‘ ∗ ) ) )
61 60 eleq1d ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( ( deg ‘ ∗ ) + 1 ) ∈ ℕ ↔ ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) )
62 57 61 mpbid ( ( deg ‘ ∗ ) ∈ ℕ0 → ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ )
63 56 62 syl ( ∗ ∈ ( Poly ‘ ℂ ) → ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ )
64 1re 1 ∈ ℝ
65 cjre ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 )
66 64 65 ax-mp ( ∗ ‘ 1 ) = 1
67 ax-1ne0 1 ≠ 0
68 66 67 eqnetri ( ∗ ‘ 1 ) ≠ 0
69 ne0p ( ( 1 ∈ ℂ ∧ ( ∗ ‘ 1 ) ≠ 0 ) → ∗ ≠ 0𝑝 )
70 47 68 69 mp2an ∗ ≠ 0𝑝
71 6 fveq1i ( Xp ‘ 1 ) = ( ( I ↾ ℂ ) ‘ 1 )
72 fvres ( 1 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 1 ) = ( I ‘ 1 ) )
73 47 72 ax-mp ( ( I ↾ ℂ ) ‘ 1 ) = ( I ‘ 1 )
74 71 73 eqtri ( Xp ‘ 1 ) = ( I ‘ 1 )
75 fvi ( 1 ∈ V → ( I ‘ 1 ) = 1 )
76 2 75 ax-mp ( I ‘ 1 ) = 1
77 74 76 eqtri ( Xp ‘ 1 ) = 1
78 77 67 eqnetri ( Xp ‘ 1 ) ≠ 0
79 ne0p ( ( 1 ∈ ℂ ∧ ( Xp ‘ 1 ) ≠ 0 ) → Xp ≠ 0𝑝 )
80 47 78 79 mp2an Xp ≠ 0𝑝
81 51 80 pm3.2i ( Xp ∈ ( Poly ‘ ℂ ) ∧ Xp ≠ 0𝑝 )
82 dgrid ( deg ‘ Xp ) = 1
83 82 eqcomi 1 = ( deg ‘ Xp )
84 eqid ( deg ‘ ∗ ) = ( deg ‘ ∗ )
85 83 84 dgrmul ( ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ Xp ≠ 0𝑝 ) ∧ ( ∗ ∈ ( Poly ‘ ℂ ) ∧ ∗ ≠ 0𝑝 ) ) → ( deg ‘ ( Xpf · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) )
86 81 85 mpan ( ( ∗ ∈ ( Poly ‘ ℂ ) ∧ ∗ ≠ 0𝑝 ) → ( deg ‘ ( Xpf · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) )
87 70 86 mpan2 ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( Xpf · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) )
88 87 eleq1d ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( Xpf · ∗ ) ) ∈ ℕ ↔ ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) )
89 63 88 mpbird ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( Xpf · ∗ ) ) ∈ ℕ )
90 49 a1i ( ∗ ∈ ( Poly ‘ ℂ ) → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) )
91 89 nngt0d ( ∗ ∈ ( Poly ‘ ℂ ) → 0 < ( deg ‘ ( Xpf · ∗ ) ) )
92 0dgr ( 1 ∈ ℂ → ( deg ‘ ( ℂ × { 1 } ) ) = 0 )
93 47 92 ax-mp ( deg ‘ ( ℂ × { 1 } ) ) = 0
94 93 eqcomi 0 = ( deg ‘ ( ℂ × { 1 } ) )
95 eqid ( deg ‘ ( Xpf · ∗ ) ) = ( deg ‘ ( Xpf · ∗ ) )
96 94 95 dgradd2 ( ( ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ∧ ( Xpf · ∗ ) ∈ ( Poly ‘ ℂ ) ∧ 0 < ( deg ‘ ( Xpf · ∗ ) ) ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) = ( deg ‘ ( Xpf · ∗ ) ) )
97 90 53 91 96 syl3anc ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) = ( deg ‘ ( Xpf · ∗ ) ) )
98 97 eleq1d ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) ∈ ℕ ↔ ( deg ‘ ( Xpf · ∗ ) ) ∈ ℕ ) )
99 98 biimprd ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( Xpf · ∗ ) ) ∈ ℕ → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) ∈ ℕ ) )
100 89 99 mpd ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) ∈ ℕ )
101 fta ( ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ) ∈ ℕ ) → ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = 0 )
102 55 100 101 syl2anc ( ∗ ∈ ( Poly ‘ ℂ ) → ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xpf · ∗ ) ) ‘ 𝑥 ) = 0 )
103 45 102 mto ¬ ∗ ∈ ( Poly ‘ ℂ )