| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnex |
⊢ ℂ ∈ V |
| 2 |
|
1ex |
⊢ 1 ∈ V |
| 3 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 4 |
2 3
|
fnmpti |
⊢ ( ℂ × { 1 } ) Fn ℂ |
| 5 |
|
fnresi |
⊢ ( I ↾ ℂ ) Fn ℂ |
| 6 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
| 7 |
6
|
fneq1i |
⊢ ( Xp Fn ℂ ↔ ( I ↾ ℂ ) Fn ℂ ) |
| 8 |
5 7
|
mpbir |
⊢ Xp Fn ℂ |
| 9 |
8
|
a1i |
⊢ ( ⊤ → Xp Fn ℂ ) |
| 10 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
| 11 |
|
ffn |
⊢ ( ∗ : ℂ ⟶ ℂ → ∗ Fn ℂ ) |
| 12 |
10 11
|
ax-mp |
⊢ ∗ Fn ℂ |
| 13 |
12
|
a1i |
⊢ ( ⊤ → ∗ Fn ℂ ) |
| 14 |
1
|
a1i |
⊢ ( ⊤ → ℂ ∈ V ) |
| 15 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
| 16 |
9 13 14 14 15
|
offn |
⊢ ( ⊤ → ( Xp ∘f · ∗ ) Fn ℂ ) |
| 17 |
16
|
mptru |
⊢ ( Xp ∘f · ∗ ) Fn ℂ |
| 18 |
|
fnfvof |
⊢ ( ( ( ( ℂ × { 1 } ) Fn ℂ ∧ ( Xp ∘f · ∗ ) Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) ) → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) ) |
| 19 |
4 17 18
|
mpanl12 |
⊢ ( ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) ) |
| 20 |
1 19
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) ) |
| 21 |
2
|
fvconst2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { 1 } ) ‘ 𝑥 ) = 1 ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ‘ 𝑥 ) + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) = ( 1 + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) ) |
| 23 |
20 22
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = ( 1 + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) ) |
| 24 |
|
fnfvof |
⊢ ( ( ( Xp Fn ℂ ∧ ∗ Fn ℂ ) ∧ ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) ) → ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) = ( ( Xp ‘ 𝑥 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 25 |
8 12 24
|
mpanl12 |
⊢ ( ( ℂ ∈ V ∧ 𝑥 ∈ ℂ ) → ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) = ( ( Xp ‘ 𝑥 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 26 |
1 25
|
mpan |
⊢ ( 𝑥 ∈ ℂ → ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) = ( ( Xp ‘ 𝑥 ) · ( ∗ ‘ 𝑥 ) ) ) |
| 27 |
6
|
fveq1i |
⊢ ( Xp ‘ 𝑥 ) = ( ( I ↾ ℂ ) ‘ 𝑥 ) |
| 28 |
|
fvres |
⊢ ( 𝑥 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 𝑥 ) = ( I ‘ 𝑥 ) ) |
| 29 |
27 28
|
eqtrid |
⊢ ( 𝑥 ∈ ℂ → ( Xp ‘ 𝑥 ) = ( I ‘ 𝑥 ) ) |
| 30 |
|
fvi |
⊢ ( 𝑥 ∈ ℂ → ( I ‘ 𝑥 ) = 𝑥 ) |
| 31 |
29 30
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( Xp ‘ 𝑥 ) = 𝑥 ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝑥 ∈ ℂ → ( ( Xp ‘ 𝑥 ) · ( ∗ ‘ 𝑥 ) ) = ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) |
| 33 |
26 32
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) = ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 + ( ( Xp ∘f · ∗ ) ‘ 𝑥 ) ) = ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
| 35 |
23 34
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
| 36 |
|
1red |
⊢ ( 𝑥 ∈ ℂ → 1 ∈ ℝ ) |
| 37 |
|
cjmulrcl |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ ) |
| 38 |
|
0lt1 |
⊢ 0 < 1 |
| 39 |
38
|
a1i |
⊢ ( 𝑥 ∈ ℂ → 0 < 1 ) |
| 40 |
|
cjmulge0 |
⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) |
| 41 |
36 37 39 40
|
addgtge0d |
⊢ ( 𝑥 ∈ ℂ → 0 < ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
| 42 |
41
|
gt0ne0d |
⊢ ( 𝑥 ∈ ℂ → ( 1 + ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ≠ 0 ) |
| 43 |
35 42
|
eqnetrd |
⊢ ( 𝑥 ∈ ℂ → ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) ≠ 0 ) |
| 44 |
43
|
neneqd |
⊢ ( 𝑥 ∈ ℂ → ¬ ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = 0 ) |
| 45 |
44
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = 0 |
| 46 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 47 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 48 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ) |
| 49 |
46 47 48
|
mp2an |
⊢ ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) |
| 50 |
|
plyid |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) ) |
| 51 |
46 47 50
|
mp2an |
⊢ Xp ∈ ( Poly ‘ ℂ ) |
| 52 |
|
plymulcl |
⊢ ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ∗ ∈ ( Poly ‘ ℂ ) ) → ( Xp ∘f · ∗ ) ∈ ( Poly ‘ ℂ ) ) |
| 53 |
51 52
|
mpan |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( Xp ∘f · ∗ ) ∈ ( Poly ‘ ℂ ) ) |
| 54 |
|
plyaddcl |
⊢ ( ( ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f · ∗ ) ∈ ( Poly ‘ ℂ ) ) → ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ∈ ( Poly ‘ ℂ ) ) |
| 55 |
49 53 54
|
sylancr |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ∈ ( Poly ‘ ℂ ) ) |
| 56 |
|
dgrcl |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ∗ ) ∈ ℕ0 ) |
| 57 |
|
nn0p1nn |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( deg ‘ ∗ ) + 1 ) ∈ ℕ ) |
| 58 |
|
nn0cn |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → ( deg ‘ ∗ ) ∈ ℂ ) |
| 59 |
|
1cnd |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → 1 ∈ ℂ ) |
| 60 |
58 59
|
addcomd |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( deg ‘ ∗ ) + 1 ) = ( 1 + ( deg ‘ ∗ ) ) ) |
| 61 |
60
|
eleq1d |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → ( ( ( deg ‘ ∗ ) + 1 ) ∈ ℕ ↔ ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) ) |
| 62 |
57 61
|
mpbid |
⊢ ( ( deg ‘ ∗ ) ∈ ℕ0 → ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) |
| 63 |
56 62
|
syl |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) |
| 64 |
|
1re |
⊢ 1 ∈ ℝ |
| 65 |
|
cjre |
⊢ ( 1 ∈ ℝ → ( ∗ ‘ 1 ) = 1 ) |
| 66 |
64 65
|
ax-mp |
⊢ ( ∗ ‘ 1 ) = 1 |
| 67 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 68 |
66 67
|
eqnetri |
⊢ ( ∗ ‘ 1 ) ≠ 0 |
| 69 |
|
ne0p |
⊢ ( ( 1 ∈ ℂ ∧ ( ∗ ‘ 1 ) ≠ 0 ) → ∗ ≠ 0𝑝 ) |
| 70 |
47 68 69
|
mp2an |
⊢ ∗ ≠ 0𝑝 |
| 71 |
6
|
fveq1i |
⊢ ( Xp ‘ 1 ) = ( ( I ↾ ℂ ) ‘ 1 ) |
| 72 |
|
fvres |
⊢ ( 1 ∈ ℂ → ( ( I ↾ ℂ ) ‘ 1 ) = ( I ‘ 1 ) ) |
| 73 |
47 72
|
ax-mp |
⊢ ( ( I ↾ ℂ ) ‘ 1 ) = ( I ‘ 1 ) |
| 74 |
71 73
|
eqtri |
⊢ ( Xp ‘ 1 ) = ( I ‘ 1 ) |
| 75 |
|
fvi |
⊢ ( 1 ∈ V → ( I ‘ 1 ) = 1 ) |
| 76 |
2 75
|
ax-mp |
⊢ ( I ‘ 1 ) = 1 |
| 77 |
74 76
|
eqtri |
⊢ ( Xp ‘ 1 ) = 1 |
| 78 |
77 67
|
eqnetri |
⊢ ( Xp ‘ 1 ) ≠ 0 |
| 79 |
|
ne0p |
⊢ ( ( 1 ∈ ℂ ∧ ( Xp ‘ 1 ) ≠ 0 ) → Xp ≠ 0𝑝 ) |
| 80 |
47 78 79
|
mp2an |
⊢ Xp ≠ 0𝑝 |
| 81 |
51 80
|
pm3.2i |
⊢ ( Xp ∈ ( Poly ‘ ℂ ) ∧ Xp ≠ 0𝑝 ) |
| 82 |
|
dgrid |
⊢ ( deg ‘ Xp ) = 1 |
| 83 |
82
|
eqcomi |
⊢ 1 = ( deg ‘ Xp ) |
| 84 |
|
eqid |
⊢ ( deg ‘ ∗ ) = ( deg ‘ ∗ ) |
| 85 |
83 84
|
dgrmul |
⊢ ( ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ Xp ≠ 0𝑝 ) ∧ ( ∗ ∈ ( Poly ‘ ℂ ) ∧ ∗ ≠ 0𝑝 ) ) → ( deg ‘ ( Xp ∘f · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) ) |
| 86 |
81 85
|
mpan |
⊢ ( ( ∗ ∈ ( Poly ‘ ℂ ) ∧ ∗ ≠ 0𝑝 ) → ( deg ‘ ( Xp ∘f · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) ) |
| 87 |
70 86
|
mpan2 |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( Xp ∘f · ∗ ) ) = ( 1 + ( deg ‘ ∗ ) ) ) |
| 88 |
87
|
eleq1d |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( Xp ∘f · ∗ ) ) ∈ ℕ ↔ ( 1 + ( deg ‘ ∗ ) ) ∈ ℕ ) ) |
| 89 |
63 88
|
mpbird |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( Xp ∘f · ∗ ) ) ∈ ℕ ) |
| 90 |
49
|
a1i |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ) |
| 91 |
89
|
nngt0d |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → 0 < ( deg ‘ ( Xp ∘f · ∗ ) ) ) |
| 92 |
|
0dgr |
⊢ ( 1 ∈ ℂ → ( deg ‘ ( ℂ × { 1 } ) ) = 0 ) |
| 93 |
47 92
|
ax-mp |
⊢ ( deg ‘ ( ℂ × { 1 } ) ) = 0 |
| 94 |
93
|
eqcomi |
⊢ 0 = ( deg ‘ ( ℂ × { 1 } ) ) |
| 95 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f · ∗ ) ) = ( deg ‘ ( Xp ∘f · ∗ ) ) |
| 96 |
94 95
|
dgradd2 |
⊢ ( ( ( ℂ × { 1 } ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f · ∗ ) ∈ ( Poly ‘ ℂ ) ∧ 0 < ( deg ‘ ( Xp ∘f · ∗ ) ) ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) = ( deg ‘ ( Xp ∘f · ∗ ) ) ) |
| 97 |
90 53 91 96
|
syl3anc |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) = ( deg ‘ ( Xp ∘f · ∗ ) ) ) |
| 98 |
97
|
eleq1d |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) ∈ ℕ ↔ ( deg ‘ ( Xp ∘f · ∗ ) ) ∈ ℕ ) ) |
| 99 |
98
|
biimprd |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( ( deg ‘ ( Xp ∘f · ∗ ) ) ∈ ℕ → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) ∈ ℕ ) ) |
| 100 |
89 99
|
mpd |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) ∈ ℕ ) |
| 101 |
|
fta |
⊢ ( ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ) ∈ ℕ ) → ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = 0 ) |
| 102 |
55 100 101
|
syl2anc |
⊢ ( ∗ ∈ ( Poly ‘ ℂ ) → ∃ 𝑥 ∈ ℂ ( ( ( ℂ × { 1 } ) ∘f + ( Xp ∘f · ∗ ) ) ‘ 𝑥 ) = 0 ) |
| 103 |
45 102
|
mto |
⊢ ¬ ∗ ∈ ( Poly ‘ ℂ ) |