Description: A test to show that a polynomial is nonzero. (Contributed by Mario Carneiro, 23-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ne0p | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) ≠ 0 ) → 𝐹 ≠ 0𝑝 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0pval | ⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) | |
| 2 | fveq1 | ⊢ ( 𝐹 = 0𝑝 → ( 𝐹 ‘ 𝐴 ) = ( 0𝑝 ‘ 𝐴 ) ) | |
| 3 | 2 | eqeq1d | ⊢ ( 𝐹 = 0𝑝 → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ ( 0𝑝 ‘ 𝐴 ) = 0 ) ) |
| 4 | 1 3 | syl5ibrcom | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 = 0𝑝 → ( 𝐹 ‘ 𝐴 ) = 0 ) ) |
| 5 | 4 | necon3d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 ‘ 𝐴 ) ≠ 0 → 𝐹 ≠ 0𝑝 ) ) |
| 6 | 5 | imp | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐹 ‘ 𝐴 ) ≠ 0 ) → 𝐹 ≠ 0𝑝 ) |