Metamath Proof Explorer


Theorem tannpoly

Description: The tangent function is not a polynomial with complex coefficients, as it is not defined on the whole complex plane. (Contributed by Ender Ting, 10-Dec-2025)

Ref Expression
Assertion tannpoly ¬ tan ∈ ( Poly ‘ ℂ )

Proof

Step Hyp Ref Expression
1 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
2 c0ex 0 ∈ V
3 2 snid 0 ∈ { 0 }
4 eleq1 ( ( cos ‘ ( π / 2 ) ) = 0 → ( ( cos ‘ ( π / 2 ) ) ∈ { 0 } ↔ 0 ∈ { 0 } ) )
5 4 biimprd ( ( cos ‘ ( π / 2 ) ) = 0 → ( 0 ∈ { 0 } → ( cos ‘ ( π / 2 ) ) ∈ { 0 } ) )
6 3 5 mpi ( ( cos ‘ ( π / 2 ) ) = 0 → ( cos ‘ ( π / 2 ) ) ∈ { 0 } )
7 1 6 ax-mp ( cos ‘ ( π / 2 ) ) ∈ { 0 }
8 eldifn ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) → ¬ ( cos ‘ ( π / 2 ) ) ∈ { 0 } )
9 7 8 mt2 ¬ ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } )
10 picn π ∈ ℂ
11 halfcl ( π ∈ ℂ → ( π / 2 ) ∈ ℂ )
12 10 11 ax-mp ( π / 2 ) ∈ ℂ
13 cosf cos : ℂ ⟶ ℂ
14 fdm ( cos : ℂ ⟶ ℂ → dom cos = ℂ )
15 13 14 ax-mp dom cos = ℂ
16 15 eleq2i ( ( π / 2 ) ∈ dom cos ↔ ( π / 2 ) ∈ ℂ )
17 12 16 mpbir ( π / 2 ) ∈ dom cos
18 ffun ( cos : ℂ ⟶ ℂ → Fun cos )
19 13 18 ax-mp Fun cos
20 fvimacnv ( ( Fun cos ∧ ( π / 2 ) ∈ dom cos ) → ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ) )
21 19 20 mpan ( ( π / 2 ) ∈ dom cos → ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ) )
22 17 21 ax-mp ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( cos “ ( ℂ ∖ { 0 } ) ) )
23 9 22 mtbi ¬ ( π / 2 ) ∈ ( cos “ ( ℂ ∖ { 0 } ) )
24 df-tan tan = ( 𝑥 ∈ ( cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) )
25 24 dmmptss dom tan ⊆ ( cos “ ( ℂ ∖ { 0 } ) )
26 25 sseli ( ( π / 2 ) ∈ dom tan → ( π / 2 ) ∈ ( cos “ ( ℂ ∖ { 0 } ) ) )
27 23 26 mto ¬ ( π / 2 ) ∈ dom tan
28 plyf ( tan ∈ ( Poly ‘ ℂ ) → tan : ℂ ⟶ ℂ )
29 fdm ( tan : ℂ ⟶ ℂ → dom tan = ℂ )
30 eleq2 ( dom tan = ℂ → ( ( π / 2 ) ∈ dom tan ↔ ( π / 2 ) ∈ ℂ ) )
31 30 biimprd ( dom tan = ℂ → ( ( π / 2 ) ∈ ℂ → ( π / 2 ) ∈ dom tan ) )
32 12 31 mpi ( dom tan = ℂ → ( π / 2 ) ∈ dom tan )
33 28 29 32 3syl ( tan ∈ ( Poly ‘ ℂ ) → ( π / 2 ) ∈ dom tan )
34 27 33 mto ¬ tan ∈ ( Poly ‘ ℂ )