| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 2 |
|
c0ex |
⊢ 0 ∈ V |
| 3 |
2
|
snid |
⊢ 0 ∈ { 0 } |
| 4 |
|
eleq1 |
⊢ ( ( cos ‘ ( π / 2 ) ) = 0 → ( ( cos ‘ ( π / 2 ) ) ∈ { 0 } ↔ 0 ∈ { 0 } ) ) |
| 5 |
4
|
biimprd |
⊢ ( ( cos ‘ ( π / 2 ) ) = 0 → ( 0 ∈ { 0 } → ( cos ‘ ( π / 2 ) ) ∈ { 0 } ) ) |
| 6 |
3 5
|
mpi |
⊢ ( ( cos ‘ ( π / 2 ) ) = 0 → ( cos ‘ ( π / 2 ) ) ∈ { 0 } ) |
| 7 |
1 6
|
ax-mp |
⊢ ( cos ‘ ( π / 2 ) ) ∈ { 0 } |
| 8 |
|
eldifn |
⊢ ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) → ¬ ( cos ‘ ( π / 2 ) ) ∈ { 0 } ) |
| 9 |
7 8
|
mt2 |
⊢ ¬ ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) |
| 10 |
|
picn |
⊢ π ∈ ℂ |
| 11 |
|
halfcl |
⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) |
| 12 |
10 11
|
ax-mp |
⊢ ( π / 2 ) ∈ ℂ |
| 13 |
|
cosf |
⊢ cos : ℂ ⟶ ℂ |
| 14 |
|
fdm |
⊢ ( cos : ℂ ⟶ ℂ → dom cos = ℂ ) |
| 15 |
13 14
|
ax-mp |
⊢ dom cos = ℂ |
| 16 |
15
|
eleq2i |
⊢ ( ( π / 2 ) ∈ dom cos ↔ ( π / 2 ) ∈ ℂ ) |
| 17 |
12 16
|
mpbir |
⊢ ( π / 2 ) ∈ dom cos |
| 18 |
|
ffun |
⊢ ( cos : ℂ ⟶ ℂ → Fun cos ) |
| 19 |
13 18
|
ax-mp |
⊢ Fun cos |
| 20 |
|
fvimacnv |
⊢ ( ( Fun cos ∧ ( π / 2 ) ∈ dom cos ) → ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) ) |
| 21 |
19 20
|
mpan |
⊢ ( ( π / 2 ) ∈ dom cos → ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) ) |
| 22 |
17 21
|
ax-mp |
⊢ ( ( cos ‘ ( π / 2 ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( π / 2 ) ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) |
| 23 |
9 22
|
mtbi |
⊢ ¬ ( π / 2 ) ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) |
| 24 |
|
df-tan |
⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
| 25 |
24
|
dmmptss |
⊢ dom tan ⊆ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) |
| 26 |
25
|
sseli |
⊢ ( ( π / 2 ) ∈ dom tan → ( π / 2 ) ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ) |
| 27 |
23 26
|
mto |
⊢ ¬ ( π / 2 ) ∈ dom tan |
| 28 |
|
plyf |
⊢ ( tan ∈ ( Poly ‘ ℂ ) → tan : ℂ ⟶ ℂ ) |
| 29 |
|
fdm |
⊢ ( tan : ℂ ⟶ ℂ → dom tan = ℂ ) |
| 30 |
|
eleq2 |
⊢ ( dom tan = ℂ → ( ( π / 2 ) ∈ dom tan ↔ ( π / 2 ) ∈ ℂ ) ) |
| 31 |
30
|
biimprd |
⊢ ( dom tan = ℂ → ( ( π / 2 ) ∈ ℂ → ( π / 2 ) ∈ dom tan ) ) |
| 32 |
12 31
|
mpi |
⊢ ( dom tan = ℂ → ( π / 2 ) ∈ dom tan ) |
| 33 |
28 29 32
|
3syl |
⊢ ( tan ∈ ( Poly ‘ ℂ ) → ( π / 2 ) ∈ dom tan ) |
| 34 |
27 33
|
mto |
⊢ ¬ tan ∈ ( Poly ‘ ℂ ) |