| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnfi |
⊢ ¬ ℕ ∈ Fin |
| 2 |
|
4re |
⊢ 4 ∈ ℝ |
| 3 |
|
resincl |
⊢ ( 4 ∈ ℝ → ( sin ‘ 4 ) ∈ ℝ ) |
| 4 |
2 3
|
ax-mp |
⊢ ( sin ‘ 4 ) ∈ ℝ |
| 5 |
|
sin4lt0 |
⊢ ( sin ‘ 4 ) < 0 |
| 6 |
|
df-0p |
⊢ 0𝑝 = ( ℂ × { 0 } ) |
| 7 |
6
|
fveq1i |
⊢ ( 0𝑝 ‘ 4 ) = ( ( ℂ × { 0 } ) ‘ 4 ) |
| 8 |
|
4cn |
⊢ 4 ∈ ℂ |
| 9 |
|
c0ex |
⊢ 0 ∈ V |
| 10 |
9
|
fvconst2 |
⊢ ( 4 ∈ ℂ → ( ( ℂ × { 0 } ) ‘ 4 ) = 0 ) |
| 11 |
8 10
|
ax-mp |
⊢ ( ( ℂ × { 0 } ) ‘ 4 ) = 0 |
| 12 |
7 11
|
eqtri |
⊢ ( 0𝑝 ‘ 4 ) = 0 |
| 13 |
12
|
eqcomi |
⊢ 0 = ( 0𝑝 ‘ 4 ) |
| 14 |
5 13
|
breqtri |
⊢ ( sin ‘ 4 ) < ( 0𝑝 ‘ 4 ) |
| 15 |
4 14
|
ltneii |
⊢ ( sin ‘ 4 ) ≠ ( 0𝑝 ‘ 4 ) |
| 16 |
|
fveq1 |
⊢ ( sin = 0𝑝 → ( sin ‘ 4 ) = ( 0𝑝 ‘ 4 ) ) |
| 17 |
16
|
necon3i |
⊢ ( ( sin ‘ 4 ) ≠ ( 0𝑝 ‘ 4 ) → sin ≠ 0𝑝 ) |
| 18 |
15 17
|
ax-mp |
⊢ sin ≠ 0𝑝 |
| 19 |
|
eqid |
⊢ ( ◡ sin “ { 0 } ) = ( ◡ sin “ { 0 } ) |
| 20 |
19
|
fta1 |
⊢ ( ( sin ∈ ( Poly ‘ ℂ ) ∧ sin ≠ 0𝑝 ) → ( ( ◡ sin “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ sin “ { 0 } ) ) ≤ ( deg ‘ sin ) ) ) |
| 21 |
18 20
|
mpan2 |
⊢ ( sin ∈ ( Poly ‘ ℂ ) → ( ( ◡ sin “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ sin “ { 0 } ) ) ≤ ( deg ‘ sin ) ) ) |
| 22 |
21
|
simpld |
⊢ ( sin ∈ ( Poly ‘ ℂ ) → ( ◡ sin “ { 0 } ) ∈ Fin ) |
| 23 |
|
ovexd |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ V ) |
| 24 |
23
|
rgen |
⊢ ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ V |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑧 ℤ |
| 26 |
25
|
mptfnf |
⊢ ( ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ V ↔ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ ) |
| 27 |
24 26
|
mpbi |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ |
| 28 |
|
sinkpi |
⊢ ( 𝑧 ∈ ℤ → ( sin ‘ ( 𝑧 · π ) ) = 0 ) |
| 29 |
9
|
snid |
⊢ 0 ∈ { 0 } |
| 30 |
28 29
|
eqeltrdi |
⊢ ( 𝑧 ∈ ℤ → ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } ) |
| 31 |
|
sinf |
⊢ sin : ℂ ⟶ ℂ |
| 32 |
|
ffun |
⊢ ( sin : ℂ ⟶ ℂ → Fun sin ) |
| 33 |
31 32
|
ax-mp |
⊢ Fun sin |
| 34 |
33
|
a1i |
⊢ ( 𝑧 ∈ ℤ → Fun sin ) |
| 35 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
| 36 |
|
picn |
⊢ π ∈ ℂ |
| 37 |
|
mulcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝑧 · π ) ∈ ℂ ) |
| 38 |
35 36 37
|
sylancl |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ ℂ ) |
| 39 |
31
|
fdmi |
⊢ dom sin = ℂ |
| 40 |
39
|
eleq2i |
⊢ ( ( 𝑧 · π ) ∈ dom sin ↔ ( 𝑧 · π ) ∈ ℂ ) |
| 41 |
38 40
|
sylibr |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ dom sin ) |
| 42 |
|
fvimacnv |
⊢ ( ( Fun sin ∧ ( 𝑧 · π ) ∈ dom sin ) → ( ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } ↔ ( 𝑧 · π ) ∈ ( ◡ sin “ { 0 } ) ) ) |
| 43 |
34 41 42
|
syl2anc |
⊢ ( 𝑧 ∈ ℤ → ( ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } ↔ ( 𝑧 · π ) ∈ ( ◡ sin “ { 0 } ) ) ) |
| 44 |
30 43
|
mpbid |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ ( ◡ sin “ { 0 } ) ) |
| 45 |
44
|
rgen |
⊢ ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ ( ◡ sin “ { 0 } ) |
| 46 |
|
eqid |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) = ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) |
| 47 |
46
|
rnmptss |
⊢ ( ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ ( ◡ sin “ { 0 } ) → ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( ◡ sin “ { 0 } ) ) |
| 48 |
45 47
|
ax-mp |
⊢ ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( ◡ sin “ { 0 } ) |
| 49 |
27 48
|
pm3.2i |
⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ ∧ ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( ◡ sin “ { 0 } ) ) |
| 50 |
|
df-f |
⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( ◡ sin “ { 0 } ) ↔ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ ∧ ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( ◡ sin “ { 0 } ) ) ) |
| 51 |
49 50
|
mpbir |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( ◡ sin “ { 0 } ) |
| 52 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = ( 𝑦 / π ) |
| 53 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑦 = ( 𝑥 · π ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑥 · π ) → ( 𝑦 / π ) = ( ( 𝑥 · π ) / π ) ) |
| 55 |
53 54
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( 𝑦 / π ) = ( ( 𝑥 · π ) / π ) ) |
| 56 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 ∈ ℤ ) |
| 57 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 58 |
56 57
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 ∈ ℂ ) |
| 59 |
|
pine0 |
⊢ π ≠ 0 |
| 60 |
|
divcan4 |
⊢ ( ( 𝑥 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0 ) → ( ( 𝑥 · π ) / π ) = 𝑥 ) |
| 61 |
36 59 60
|
mp3an23 |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 · π ) / π ) = 𝑥 ) |
| 62 |
58 61
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( ( 𝑥 · π ) / π ) = 𝑥 ) |
| 63 |
55 62
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( 𝑦 / π ) = 𝑥 ) |
| 64 |
63
|
eqcomd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 = ( 𝑦 / π ) ) |
| 65 |
64
|
moimi |
⊢ ( ∃* 𝑥 𝑥 = ( 𝑦 / π ) → ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) |
| 66 |
52 65
|
ax-mp |
⊢ ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) |
| 67 |
66
|
ax-gen |
⊢ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) |
| 68 |
|
vex |
⊢ 𝑥 ∈ V |
| 69 |
|
vex |
⊢ 𝑦 ∈ V |
| 70 |
|
eleq1w |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( 𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ ) ) |
| 72 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑦 → ( 𝑡 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑧 · π ) ) ) |
| 73 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 · π ) = ( 𝑥 · π ) ) |
| 74 |
73
|
eqeq2d |
⊢ ( 𝑧 = 𝑥 → ( 𝑦 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑥 · π ) ) ) |
| 75 |
72 74
|
sylan9bbr |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( 𝑡 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑥 · π ) ) ) |
| 76 |
71 75
|
anbi12d |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑡 = ( 𝑧 · π ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) ) |
| 77 |
|
df-mpt |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) = { 〈 𝑧 , 𝑡 〉 ∣ ( 𝑧 ∈ ℤ ∧ 𝑡 = ( 𝑧 · π ) ) } |
| 78 |
68 69 76 77
|
braba |
⊢ ( 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) |
| 79 |
78
|
mobii |
⊢ ( ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) |
| 80 |
79
|
albii |
⊢ ( ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) |
| 81 |
67 80
|
mpbir |
⊢ ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 |
| 82 |
51 81
|
pm3.2i |
⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( ◡ sin “ { 0 } ) ∧ ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ) |
| 83 |
|
dff12 |
⊢ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( ◡ sin “ { 0 } ) ↔ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( ◡ sin “ { 0 } ) ∧ ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ) ) |
| 84 |
82 83
|
mpbir |
⊢ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( ◡ sin “ { 0 } ) |
| 85 |
|
f1fi |
⊢ ( ( ( ◡ sin “ { 0 } ) ∈ Fin ∧ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( ◡ sin “ { 0 } ) ) → ℤ ∈ Fin ) |
| 86 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
| 87 |
|
ssfi |
⊢ ( ( ℤ ∈ Fin ∧ ℕ ⊆ ℤ ) → ℕ ∈ Fin ) |
| 88 |
86 87
|
mpan2 |
⊢ ( ℤ ∈ Fin → ℕ ∈ Fin ) |
| 89 |
85 88
|
syl |
⊢ ( ( ( ◡ sin “ { 0 } ) ∈ Fin ∧ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( ◡ sin “ { 0 } ) ) → ℕ ∈ Fin ) |
| 90 |
84 89
|
mpan2 |
⊢ ( ( ◡ sin “ { 0 } ) ∈ Fin → ℕ ∈ Fin ) |
| 91 |
22 90
|
syl |
⊢ ( sin ∈ ( Poly ‘ ℂ ) → ℕ ∈ Fin ) |
| 92 |
1 91
|
mto |
⊢ ¬ sin ∈ ( Poly ‘ ℂ ) |