Metamath Proof Explorer


Theorem sinnpoly

Description: Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 . (Contributed by Ender Ting, 10-Dec-2025)

Ref Expression
Assertion sinnpoly ¬ sin ∈ ( Poly ‘ ℂ )

Proof

Step Hyp Ref Expression
1 nnnfi ¬ ℕ ∈ Fin
2 4re 4 ∈ ℝ
3 resincl ( 4 ∈ ℝ → ( sin ‘ 4 ) ∈ ℝ )
4 2 3 ax-mp ( sin ‘ 4 ) ∈ ℝ
5 sin4lt0 ( sin ‘ 4 ) < 0
6 df-0p 0𝑝 = ( ℂ × { 0 } )
7 6 fveq1i ( 0𝑝 ‘ 4 ) = ( ( ℂ × { 0 } ) ‘ 4 )
8 4cn 4 ∈ ℂ
9 c0ex 0 ∈ V
10 9 fvconst2 ( 4 ∈ ℂ → ( ( ℂ × { 0 } ) ‘ 4 ) = 0 )
11 8 10 ax-mp ( ( ℂ × { 0 } ) ‘ 4 ) = 0
12 7 11 eqtri ( 0𝑝 ‘ 4 ) = 0
13 12 eqcomi 0 = ( 0𝑝 ‘ 4 )
14 5 13 breqtri ( sin ‘ 4 ) < ( 0𝑝 ‘ 4 )
15 4 14 ltneii ( sin ‘ 4 ) ≠ ( 0𝑝 ‘ 4 )
16 fveq1 ( sin = 0𝑝 → ( sin ‘ 4 ) = ( 0𝑝 ‘ 4 ) )
17 16 necon3i ( ( sin ‘ 4 ) ≠ ( 0𝑝 ‘ 4 ) → sin ≠ 0𝑝 )
18 15 17 ax-mp sin ≠ 0𝑝
19 eqid ( sin “ { 0 } ) = ( sin “ { 0 } )
20 19 fta1 ( ( sin ∈ ( Poly ‘ ℂ ) ∧ sin ≠ 0𝑝 ) → ( ( sin “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( sin “ { 0 } ) ) ≤ ( deg ‘ sin ) ) )
21 18 20 mpan2 ( sin ∈ ( Poly ‘ ℂ ) → ( ( sin “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( sin “ { 0 } ) ) ≤ ( deg ‘ sin ) ) )
22 21 simpld ( sin ∈ ( Poly ‘ ℂ ) → ( sin “ { 0 } ) ∈ Fin )
23 ovexd ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ V )
24 23 rgen 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ V
25 nfcv 𝑧
26 25 mptfnf ( ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ V ↔ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ )
27 24 26 mpbi ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ
28 sinkpi ( 𝑧 ∈ ℤ → ( sin ‘ ( 𝑧 · π ) ) = 0 )
29 9 snid 0 ∈ { 0 }
30 28 29 eqeltrdi ( 𝑧 ∈ ℤ → ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } )
31 sinf sin : ℂ ⟶ ℂ
32 ffun ( sin : ℂ ⟶ ℂ → Fun sin )
33 31 32 ax-mp Fun sin
34 33 a1i ( 𝑧 ∈ ℤ → Fun sin )
35 zcn ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ )
36 picn π ∈ ℂ
37 mulcl ( ( 𝑧 ∈ ℂ ∧ π ∈ ℂ ) → ( 𝑧 · π ) ∈ ℂ )
38 35 36 37 sylancl ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ ℂ )
39 31 fdmi dom sin = ℂ
40 39 eleq2i ( ( 𝑧 · π ) ∈ dom sin ↔ ( 𝑧 · π ) ∈ ℂ )
41 38 40 sylibr ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ dom sin )
42 fvimacnv ( ( Fun sin ∧ ( 𝑧 · π ) ∈ dom sin ) → ( ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } ↔ ( 𝑧 · π ) ∈ ( sin “ { 0 } ) ) )
43 34 41 42 syl2anc ( 𝑧 ∈ ℤ → ( ( sin ‘ ( 𝑧 · π ) ) ∈ { 0 } ↔ ( 𝑧 · π ) ∈ ( sin “ { 0 } ) ) )
44 30 43 mpbid ( 𝑧 ∈ ℤ → ( 𝑧 · π ) ∈ ( sin “ { 0 } ) )
45 44 rgen 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ ( sin “ { 0 } )
46 eqid ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) = ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) )
47 46 rnmptss ( ∀ 𝑧 ∈ ℤ ( 𝑧 · π ) ∈ ( sin “ { 0 } ) → ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( sin “ { 0 } ) )
48 45 47 ax-mp ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( sin “ { 0 } )
49 27 48 pm3.2i ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ ∧ ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( sin “ { 0 } ) )
50 df-f ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( sin “ { 0 } ) ↔ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) Fn ℤ ∧ ran ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) ⊆ ( sin “ { 0 } ) ) )
51 49 50 mpbir ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( sin “ { 0 } )
52 moeq ∃* 𝑥 𝑥 = ( 𝑦 / π )
53 simpr ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑦 = ( 𝑥 · π ) )
54 oveq1 ( 𝑦 = ( 𝑥 · π ) → ( 𝑦 / π ) = ( ( 𝑥 · π ) / π ) )
55 53 54 syl ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( 𝑦 / π ) = ( ( 𝑥 · π ) / π ) )
56 simpl ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 ∈ ℤ )
57 zcn ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ )
58 56 57 syl ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 ∈ ℂ )
59 pine0 π ≠ 0
60 divcan4 ( ( 𝑥 ∈ ℂ ∧ π ∈ ℂ ∧ π ≠ 0 ) → ( ( 𝑥 · π ) / π ) = 𝑥 )
61 36 59 60 mp3an23 ( 𝑥 ∈ ℂ → ( ( 𝑥 · π ) / π ) = 𝑥 )
62 58 61 syl ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( ( 𝑥 · π ) / π ) = 𝑥 )
63 55 62 eqtrd ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → ( 𝑦 / π ) = 𝑥 )
64 63 eqcomd ( ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) → 𝑥 = ( 𝑦 / π ) )
65 64 moimi ( ∃* 𝑥 𝑥 = ( 𝑦 / π ) → ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) )
66 52 65 ax-mp ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) )
67 66 ax-gen 𝑦 ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) )
68 vex 𝑥 ∈ V
69 vex 𝑦 ∈ V
70 eleq1w ( 𝑧 = 𝑥 → ( 𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ ) )
71 70 adantr ( ( 𝑧 = 𝑥𝑡 = 𝑦 ) → ( 𝑧 ∈ ℤ ↔ 𝑥 ∈ ℤ ) )
72 eqeq1 ( 𝑡 = 𝑦 → ( 𝑡 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑧 · π ) ) )
73 oveq1 ( 𝑧 = 𝑥 → ( 𝑧 · π ) = ( 𝑥 · π ) )
74 73 eqeq2d ( 𝑧 = 𝑥 → ( 𝑦 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑥 · π ) ) )
75 72 74 sylan9bbr ( ( 𝑧 = 𝑥𝑡 = 𝑦 ) → ( 𝑡 = ( 𝑧 · π ) ↔ 𝑦 = ( 𝑥 · π ) ) )
76 71 75 anbi12d ( ( 𝑧 = 𝑥𝑡 = 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑡 = ( 𝑧 · π ) ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) ) )
77 df-mpt ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) = { ⟨ 𝑧 , 𝑡 ⟩ ∣ ( 𝑧 ∈ ℤ ∧ 𝑡 = ( 𝑧 · π ) ) }
78 68 69 76 77 braba ( 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) )
79 78 mobii ( ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) )
80 79 albii ( ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ℤ ∧ 𝑦 = ( 𝑥 · π ) ) )
81 67 80 mpbir 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦
82 51 81 pm3.2i ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( sin “ { 0 } ) ∧ ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 )
83 dff12 ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( sin “ { 0 } ) ↔ ( ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ ⟶ ( sin “ { 0 } ) ∧ ∀ 𝑦 ∃* 𝑥 𝑥 ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) 𝑦 ) )
84 82 83 mpbir ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( sin “ { 0 } )
85 f1fi ( ( ( sin “ { 0 } ) ∈ Fin ∧ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( sin “ { 0 } ) ) → ℤ ∈ Fin )
86 nnssz ℕ ⊆ ℤ
87 ssfi ( ( ℤ ∈ Fin ∧ ℕ ⊆ ℤ ) → ℕ ∈ Fin )
88 86 87 mpan2 ( ℤ ∈ Fin → ℕ ∈ Fin )
89 85 88 syl ( ( ( sin “ { 0 } ) ∈ Fin ∧ ( 𝑧 ∈ ℤ ↦ ( 𝑧 · π ) ) : ℤ –1-1→ ( sin “ { 0 } ) ) → ℕ ∈ Fin )
90 84 89 mpan2 ( ( sin “ { 0 } ) ∈ Fin → ℕ ∈ Fin )
91 22 90 syl ( sin ∈ ( Poly ‘ ℂ ) → ℕ ∈ Fin )
92 1 91 mto ¬ sin ∈ ( Poly ‘ ℂ )