Metamath Proof Explorer


Theorem sinnpoly

Description: Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 . (Contributed by Ender Ting, 10-Dec-2025)

Ref Expression
Assertion sinnpoly ¬ sin Poly

Proof

Step Hyp Ref Expression
1 nnnfi ¬ Fin
2 4re 4
3 resincl 4 sin 4
4 2 3 ax-mp sin 4
5 sin4lt0 sin 4 < 0
6 df-0p 0 𝑝 = × 0
7 6 fveq1i 0 𝑝 4 = × 0 4
8 4cn 4
9 c0ex 0 V
10 9 fvconst2 4 × 0 4 = 0
11 8 10 ax-mp × 0 4 = 0
12 7 11 eqtri 0 𝑝 4 = 0
13 12 eqcomi 0 = 0 𝑝 4
14 5 13 breqtri sin 4 < 0 𝑝 4
15 4 14 ltneii sin 4 0 𝑝 4
16 fveq1 sin = 0 𝑝 sin 4 = 0 𝑝 4
17 16 necon3i sin 4 0 𝑝 4 sin 0 𝑝
18 15 17 ax-mp sin 0 𝑝
19 eqid sin -1 0 = sin -1 0
20 19 fta1 sin Poly sin 0 𝑝 sin -1 0 Fin sin -1 0 deg sin
21 18 20 mpan2 sin Poly sin -1 0 Fin sin -1 0 deg sin
22 21 simpld sin Poly sin -1 0 Fin
23 ovexd z z π V
24 23 rgen z z π V
25 nfcv _ z
26 25 mptfnf z z π V z z π Fn
27 24 26 mpbi z z π Fn
28 sinkpi z sin z π = 0
29 9 snid 0 0
30 28 29 eqeltrdi z sin z π 0
31 sinf sin :
32 ffun sin : Fun sin
33 31 32 ax-mp Fun sin
34 33 a1i z Fun sin
35 zcn z z
36 picn π
37 mulcl z π z π
38 35 36 37 sylancl z z π
39 31 fdmi dom sin =
40 39 eleq2i z π dom sin z π
41 38 40 sylibr z z π dom sin
42 fvimacnv Fun sin z π dom sin sin z π 0 z π sin -1 0
43 34 41 42 syl2anc z sin z π 0 z π sin -1 0
44 30 43 mpbid z z π sin -1 0
45 44 rgen z z π sin -1 0
46 eqid z z π = z z π
47 46 rnmptss z z π sin -1 0 ran z z π sin -1 0
48 45 47 ax-mp ran z z π sin -1 0
49 27 48 pm3.2i z z π Fn ran z z π sin -1 0
50 df-f z z π : sin -1 0 z z π Fn ran z z π sin -1 0
51 49 50 mpbir z z π : sin -1 0
52 moeq * x x = y π
53 simpr x y = x π y = x π
54 oveq1 y = x π y π = x π π
55 53 54 syl x y = x π y π = x π π
56 simpl x y = x π x
57 zcn x x
58 56 57 syl x y = x π x
59 pine0 π 0
60 divcan4 x π π 0 x π π = x
61 36 59 60 mp3an23 x x π π = x
62 58 61 syl x y = x π x π π = x
63 55 62 eqtrd x y = x π y π = x
64 63 eqcomd x y = x π x = y π
65 64 moimi * x x = y π * x x y = x π
66 52 65 ax-mp * x x y = x π
67 66 ax-gen y * x x y = x π
68 vex x V
69 vex y V
70 eleq1w z = x z x
71 70 adantr z = x t = y z x
72 eqeq1 t = y t = z π y = z π
73 oveq1 z = x z π = x π
74 73 eqeq2d z = x y = z π y = x π
75 72 74 sylan9bbr z = x t = y t = z π y = x π
76 71 75 anbi12d z = x t = y z t = z π x y = x π
77 df-mpt z z π = z t | z t = z π
78 68 69 76 77 braba x z z π y x y = x π
79 78 mobii * x x z z π y * x x y = x π
80 79 albii y * x x z z π y y * x x y = x π
81 67 80 mpbir y * x x z z π y
82 51 81 pm3.2i z z π : sin -1 0 y * x x z z π y
83 dff12 z z π : 1-1 sin -1 0 z z π : sin -1 0 y * x x z z π y
84 82 83 mpbir z z π : 1-1 sin -1 0
85 f1fi sin -1 0 Fin z z π : 1-1 sin -1 0 Fin
86 nnssz
87 ssfi Fin Fin
88 86 87 mpan2 Fin Fin
89 85 88 syl sin -1 0 Fin z z π : 1-1 sin -1 0 Fin
90 84 89 mpan2 sin -1 0 Fin Fin
91 22 90 syl sin Poly Fin
92 1 91 mto ¬ sin Poly