| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnnfi |
|- -. NN e. Fin |
| 2 |
|
4re |
|- 4 e. RR |
| 3 |
|
resincl |
|- ( 4 e. RR -> ( sin ` 4 ) e. RR ) |
| 4 |
2 3
|
ax-mp |
|- ( sin ` 4 ) e. RR |
| 5 |
|
sin4lt0 |
|- ( sin ` 4 ) < 0 |
| 6 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 7 |
6
|
fveq1i |
|- ( 0p ` 4 ) = ( ( CC X. { 0 } ) ` 4 ) |
| 8 |
|
4cn |
|- 4 e. CC |
| 9 |
|
c0ex |
|- 0 e. _V |
| 10 |
9
|
fvconst2 |
|- ( 4 e. CC -> ( ( CC X. { 0 } ) ` 4 ) = 0 ) |
| 11 |
8 10
|
ax-mp |
|- ( ( CC X. { 0 } ) ` 4 ) = 0 |
| 12 |
7 11
|
eqtri |
|- ( 0p ` 4 ) = 0 |
| 13 |
12
|
eqcomi |
|- 0 = ( 0p ` 4 ) |
| 14 |
5 13
|
breqtri |
|- ( sin ` 4 ) < ( 0p ` 4 ) |
| 15 |
4 14
|
ltneii |
|- ( sin ` 4 ) =/= ( 0p ` 4 ) |
| 16 |
|
fveq1 |
|- ( sin = 0p -> ( sin ` 4 ) = ( 0p ` 4 ) ) |
| 17 |
16
|
necon3i |
|- ( ( sin ` 4 ) =/= ( 0p ` 4 ) -> sin =/= 0p ) |
| 18 |
15 17
|
ax-mp |
|- sin =/= 0p |
| 19 |
|
eqid |
|- ( `' sin " { 0 } ) = ( `' sin " { 0 } ) |
| 20 |
19
|
fta1 |
|- ( ( sin e. ( Poly ` CC ) /\ sin =/= 0p ) -> ( ( `' sin " { 0 } ) e. Fin /\ ( # ` ( `' sin " { 0 } ) ) <_ ( deg ` sin ) ) ) |
| 21 |
18 20
|
mpan2 |
|- ( sin e. ( Poly ` CC ) -> ( ( `' sin " { 0 } ) e. Fin /\ ( # ` ( `' sin " { 0 } ) ) <_ ( deg ` sin ) ) ) |
| 22 |
21
|
simpld |
|- ( sin e. ( Poly ` CC ) -> ( `' sin " { 0 } ) e. Fin ) |
| 23 |
|
ovexd |
|- ( z e. ZZ -> ( z x. _pi ) e. _V ) |
| 24 |
23
|
rgen |
|- A. z e. ZZ ( z x. _pi ) e. _V |
| 25 |
|
nfcv |
|- F/_ z ZZ |
| 26 |
25
|
mptfnf |
|- ( A. z e. ZZ ( z x. _pi ) e. _V <-> ( z e. ZZ |-> ( z x. _pi ) ) Fn ZZ ) |
| 27 |
24 26
|
mpbi |
|- ( z e. ZZ |-> ( z x. _pi ) ) Fn ZZ |
| 28 |
|
sinkpi |
|- ( z e. ZZ -> ( sin ` ( z x. _pi ) ) = 0 ) |
| 29 |
9
|
snid |
|- 0 e. { 0 } |
| 30 |
28 29
|
eqeltrdi |
|- ( z e. ZZ -> ( sin ` ( z x. _pi ) ) e. { 0 } ) |
| 31 |
|
sinf |
|- sin : CC --> CC |
| 32 |
|
ffun |
|- ( sin : CC --> CC -> Fun sin ) |
| 33 |
31 32
|
ax-mp |
|- Fun sin |
| 34 |
33
|
a1i |
|- ( z e. ZZ -> Fun sin ) |
| 35 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
| 36 |
|
picn |
|- _pi e. CC |
| 37 |
|
mulcl |
|- ( ( z e. CC /\ _pi e. CC ) -> ( z x. _pi ) e. CC ) |
| 38 |
35 36 37
|
sylancl |
|- ( z e. ZZ -> ( z x. _pi ) e. CC ) |
| 39 |
31
|
fdmi |
|- dom sin = CC |
| 40 |
39
|
eleq2i |
|- ( ( z x. _pi ) e. dom sin <-> ( z x. _pi ) e. CC ) |
| 41 |
38 40
|
sylibr |
|- ( z e. ZZ -> ( z x. _pi ) e. dom sin ) |
| 42 |
|
fvimacnv |
|- ( ( Fun sin /\ ( z x. _pi ) e. dom sin ) -> ( ( sin ` ( z x. _pi ) ) e. { 0 } <-> ( z x. _pi ) e. ( `' sin " { 0 } ) ) ) |
| 43 |
34 41 42
|
syl2anc |
|- ( z e. ZZ -> ( ( sin ` ( z x. _pi ) ) e. { 0 } <-> ( z x. _pi ) e. ( `' sin " { 0 } ) ) ) |
| 44 |
30 43
|
mpbid |
|- ( z e. ZZ -> ( z x. _pi ) e. ( `' sin " { 0 } ) ) |
| 45 |
44
|
rgen |
|- A. z e. ZZ ( z x. _pi ) e. ( `' sin " { 0 } ) |
| 46 |
|
eqid |
|- ( z e. ZZ |-> ( z x. _pi ) ) = ( z e. ZZ |-> ( z x. _pi ) ) |
| 47 |
46
|
rnmptss |
|- ( A. z e. ZZ ( z x. _pi ) e. ( `' sin " { 0 } ) -> ran ( z e. ZZ |-> ( z x. _pi ) ) C_ ( `' sin " { 0 } ) ) |
| 48 |
45 47
|
ax-mp |
|- ran ( z e. ZZ |-> ( z x. _pi ) ) C_ ( `' sin " { 0 } ) |
| 49 |
27 48
|
pm3.2i |
|- ( ( z e. ZZ |-> ( z x. _pi ) ) Fn ZZ /\ ran ( z e. ZZ |-> ( z x. _pi ) ) C_ ( `' sin " { 0 } ) ) |
| 50 |
|
df-f |
|- ( ( z e. ZZ |-> ( z x. _pi ) ) : ZZ --> ( `' sin " { 0 } ) <-> ( ( z e. ZZ |-> ( z x. _pi ) ) Fn ZZ /\ ran ( z e. ZZ |-> ( z x. _pi ) ) C_ ( `' sin " { 0 } ) ) ) |
| 51 |
49 50
|
mpbir |
|- ( z e. ZZ |-> ( z x. _pi ) ) : ZZ --> ( `' sin " { 0 } ) |
| 52 |
|
moeq |
|- E* x x = ( y / _pi ) |
| 53 |
|
simpr |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> y = ( x x. _pi ) ) |
| 54 |
|
oveq1 |
|- ( y = ( x x. _pi ) -> ( y / _pi ) = ( ( x x. _pi ) / _pi ) ) |
| 55 |
53 54
|
syl |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> ( y / _pi ) = ( ( x x. _pi ) / _pi ) ) |
| 56 |
|
simpl |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> x e. ZZ ) |
| 57 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 58 |
56 57
|
syl |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> x e. CC ) |
| 59 |
|
pine0 |
|- _pi =/= 0 |
| 60 |
|
divcan4 |
|- ( ( x e. CC /\ _pi e. CC /\ _pi =/= 0 ) -> ( ( x x. _pi ) / _pi ) = x ) |
| 61 |
36 59 60
|
mp3an23 |
|- ( x e. CC -> ( ( x x. _pi ) / _pi ) = x ) |
| 62 |
58 61
|
syl |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> ( ( x x. _pi ) / _pi ) = x ) |
| 63 |
55 62
|
eqtrd |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> ( y / _pi ) = x ) |
| 64 |
63
|
eqcomd |
|- ( ( x e. ZZ /\ y = ( x x. _pi ) ) -> x = ( y / _pi ) ) |
| 65 |
64
|
moimi |
|- ( E* x x = ( y / _pi ) -> E* x ( x e. ZZ /\ y = ( x x. _pi ) ) ) |
| 66 |
52 65
|
ax-mp |
|- E* x ( x e. ZZ /\ y = ( x x. _pi ) ) |
| 67 |
66
|
ax-gen |
|- A. y E* x ( x e. ZZ /\ y = ( x x. _pi ) ) |
| 68 |
|
vex |
|- x e. _V |
| 69 |
|
vex |
|- y e. _V |
| 70 |
|
eleq1w |
|- ( z = x -> ( z e. ZZ <-> x e. ZZ ) ) |
| 71 |
70
|
adantr |
|- ( ( z = x /\ t = y ) -> ( z e. ZZ <-> x e. ZZ ) ) |
| 72 |
|
eqeq1 |
|- ( t = y -> ( t = ( z x. _pi ) <-> y = ( z x. _pi ) ) ) |
| 73 |
|
oveq1 |
|- ( z = x -> ( z x. _pi ) = ( x x. _pi ) ) |
| 74 |
73
|
eqeq2d |
|- ( z = x -> ( y = ( z x. _pi ) <-> y = ( x x. _pi ) ) ) |
| 75 |
72 74
|
sylan9bbr |
|- ( ( z = x /\ t = y ) -> ( t = ( z x. _pi ) <-> y = ( x x. _pi ) ) ) |
| 76 |
71 75
|
anbi12d |
|- ( ( z = x /\ t = y ) -> ( ( z e. ZZ /\ t = ( z x. _pi ) ) <-> ( x e. ZZ /\ y = ( x x. _pi ) ) ) ) |
| 77 |
|
df-mpt |
|- ( z e. ZZ |-> ( z x. _pi ) ) = { <. z , t >. | ( z e. ZZ /\ t = ( z x. _pi ) ) } |
| 78 |
68 69 76 77
|
braba |
|- ( x ( z e. ZZ |-> ( z x. _pi ) ) y <-> ( x e. ZZ /\ y = ( x x. _pi ) ) ) |
| 79 |
78
|
mobii |
|- ( E* x x ( z e. ZZ |-> ( z x. _pi ) ) y <-> E* x ( x e. ZZ /\ y = ( x x. _pi ) ) ) |
| 80 |
79
|
albii |
|- ( A. y E* x x ( z e. ZZ |-> ( z x. _pi ) ) y <-> A. y E* x ( x e. ZZ /\ y = ( x x. _pi ) ) ) |
| 81 |
67 80
|
mpbir |
|- A. y E* x x ( z e. ZZ |-> ( z x. _pi ) ) y |
| 82 |
51 81
|
pm3.2i |
|- ( ( z e. ZZ |-> ( z x. _pi ) ) : ZZ --> ( `' sin " { 0 } ) /\ A. y E* x x ( z e. ZZ |-> ( z x. _pi ) ) y ) |
| 83 |
|
dff12 |
|- ( ( z e. ZZ |-> ( z x. _pi ) ) : ZZ -1-1-> ( `' sin " { 0 } ) <-> ( ( z e. ZZ |-> ( z x. _pi ) ) : ZZ --> ( `' sin " { 0 } ) /\ A. y E* x x ( z e. ZZ |-> ( z x. _pi ) ) y ) ) |
| 84 |
82 83
|
mpbir |
|- ( z e. ZZ |-> ( z x. _pi ) ) : ZZ -1-1-> ( `' sin " { 0 } ) |
| 85 |
|
f1fi |
|- ( ( ( `' sin " { 0 } ) e. Fin /\ ( z e. ZZ |-> ( z x. _pi ) ) : ZZ -1-1-> ( `' sin " { 0 } ) ) -> ZZ e. Fin ) |
| 86 |
|
nnssz |
|- NN C_ ZZ |
| 87 |
|
ssfi |
|- ( ( ZZ e. Fin /\ NN C_ ZZ ) -> NN e. Fin ) |
| 88 |
86 87
|
mpan2 |
|- ( ZZ e. Fin -> NN e. Fin ) |
| 89 |
85 88
|
syl |
|- ( ( ( `' sin " { 0 } ) e. Fin /\ ( z e. ZZ |-> ( z x. _pi ) ) : ZZ -1-1-> ( `' sin " { 0 } ) ) -> NN e. Fin ) |
| 90 |
84 89
|
mpan2 |
|- ( ( `' sin " { 0 } ) e. Fin -> NN e. Fin ) |
| 91 |
22 90
|
syl |
|- ( sin e. ( Poly ` CC ) -> NN e. Fin ) |
| 92 |
1 91
|
mto |
|- -. sin e. ( Poly ` CC ) |