| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptfnf.0 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
eueq |
⊢ ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ) |
| 4 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 5 |
|
df-eu |
⊢ ( ∃! 𝑦 𝑦 = 𝐵 ↔ ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 6 |
5
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 𝑦 = 𝐵 ∧ ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 7 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 8 |
7
|
fneq1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } Fn 𝐴 ) |
| 9 |
|
df-fn |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } Fn 𝐴 ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) |
| 10 |
8 9
|
bitri |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) |
| 11 |
|
moanimv |
⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 13 |
|
funopab |
⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 14 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 15 |
12 13 14
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ) |
| 16 |
|
eqcom |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } = 𝐴 ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ) |
| 17 |
|
dmopab |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
| 18 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 19 |
18
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } |
| 20 |
17 19
|
eqtri |
⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } |
| 21 |
20
|
eqeq1i |
⊢ ( dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } = 𝐴 ) |
| 22 |
|
pm4.71 |
⊢ ( ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) |
| 23 |
22
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) |
| 24 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 25 |
1
|
eqabf |
⊢ ( 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) ) ) |
| 26 |
23 24 25
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ 𝐴 = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 𝑦 = 𝐵 ) } ) |
| 27 |
16 21 26
|
3bitr4ri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ↔ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) |
| 28 |
15 27
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ∧ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = 𝐴 ) ) |
| 29 |
|
ancom |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 30 |
10 28 29
|
3bitr2i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 𝑦 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 𝑦 = 𝐵 ) ) |
| 31 |
4 6 30
|
3bitr4ri |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑦 = 𝐵 ) |
| 32 |
3 31
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |