| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coshalfpi |
|- ( cos ` ( _pi / 2 ) ) = 0 |
| 2 |
|
c0ex |
|- 0 e. _V |
| 3 |
2
|
snid |
|- 0 e. { 0 } |
| 4 |
|
eleq1 |
|- ( ( cos ` ( _pi / 2 ) ) = 0 -> ( ( cos ` ( _pi / 2 ) ) e. { 0 } <-> 0 e. { 0 } ) ) |
| 5 |
4
|
biimprd |
|- ( ( cos ` ( _pi / 2 ) ) = 0 -> ( 0 e. { 0 } -> ( cos ` ( _pi / 2 ) ) e. { 0 } ) ) |
| 6 |
3 5
|
mpi |
|- ( ( cos ` ( _pi / 2 ) ) = 0 -> ( cos ` ( _pi / 2 ) ) e. { 0 } ) |
| 7 |
1 6
|
ax-mp |
|- ( cos ` ( _pi / 2 ) ) e. { 0 } |
| 8 |
|
eldifn |
|- ( ( cos ` ( _pi / 2 ) ) e. ( CC \ { 0 } ) -> -. ( cos ` ( _pi / 2 ) ) e. { 0 } ) |
| 9 |
7 8
|
mt2 |
|- -. ( cos ` ( _pi / 2 ) ) e. ( CC \ { 0 } ) |
| 10 |
|
picn |
|- _pi e. CC |
| 11 |
|
halfcl |
|- ( _pi e. CC -> ( _pi / 2 ) e. CC ) |
| 12 |
10 11
|
ax-mp |
|- ( _pi / 2 ) e. CC |
| 13 |
|
cosf |
|- cos : CC --> CC |
| 14 |
|
fdm |
|- ( cos : CC --> CC -> dom cos = CC ) |
| 15 |
13 14
|
ax-mp |
|- dom cos = CC |
| 16 |
15
|
eleq2i |
|- ( ( _pi / 2 ) e. dom cos <-> ( _pi / 2 ) e. CC ) |
| 17 |
12 16
|
mpbir |
|- ( _pi / 2 ) e. dom cos |
| 18 |
|
ffun |
|- ( cos : CC --> CC -> Fun cos ) |
| 19 |
13 18
|
ax-mp |
|- Fun cos |
| 20 |
|
fvimacnv |
|- ( ( Fun cos /\ ( _pi / 2 ) e. dom cos ) -> ( ( cos ` ( _pi / 2 ) ) e. ( CC \ { 0 } ) <-> ( _pi / 2 ) e. ( `' cos " ( CC \ { 0 } ) ) ) ) |
| 21 |
19 20
|
mpan |
|- ( ( _pi / 2 ) e. dom cos -> ( ( cos ` ( _pi / 2 ) ) e. ( CC \ { 0 } ) <-> ( _pi / 2 ) e. ( `' cos " ( CC \ { 0 } ) ) ) ) |
| 22 |
17 21
|
ax-mp |
|- ( ( cos ` ( _pi / 2 ) ) e. ( CC \ { 0 } ) <-> ( _pi / 2 ) e. ( `' cos " ( CC \ { 0 } ) ) ) |
| 23 |
9 22
|
mtbi |
|- -. ( _pi / 2 ) e. ( `' cos " ( CC \ { 0 } ) ) |
| 24 |
|
df-tan |
|- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |
| 25 |
24
|
dmmptss |
|- dom tan C_ ( `' cos " ( CC \ { 0 } ) ) |
| 26 |
25
|
sseli |
|- ( ( _pi / 2 ) e. dom tan -> ( _pi / 2 ) e. ( `' cos " ( CC \ { 0 } ) ) ) |
| 27 |
23 26
|
mto |
|- -. ( _pi / 2 ) e. dom tan |
| 28 |
|
plyf |
|- ( tan e. ( Poly ` CC ) -> tan : CC --> CC ) |
| 29 |
|
fdm |
|- ( tan : CC --> CC -> dom tan = CC ) |
| 30 |
|
eleq2 |
|- ( dom tan = CC -> ( ( _pi / 2 ) e. dom tan <-> ( _pi / 2 ) e. CC ) ) |
| 31 |
30
|
biimprd |
|- ( dom tan = CC -> ( ( _pi / 2 ) e. CC -> ( _pi / 2 ) e. dom tan ) ) |
| 32 |
12 31
|
mpi |
|- ( dom tan = CC -> ( _pi / 2 ) e. dom tan ) |
| 33 |
28 29 32
|
3syl |
|- ( tan e. ( Poly ` CC ) -> ( _pi / 2 ) e. dom tan ) |
| 34 |
27 33
|
mto |
|- -. tan e. ( Poly ` CC ) |