| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lamberte.1 |
⊢ 𝑅 = ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 2 |
|
1ex |
⊢ 1 ∈ V |
| 3 |
|
epr |
⊢ e ∈ ℝ+ |
| 4 |
3
|
elexi |
⊢ e ∈ V |
| 5 |
|
eqcom |
⊢ ( 𝑥 = 1 ↔ 1 = 𝑥 ) |
| 6 |
5
|
biimpi |
⊢ ( 𝑥 = 1 → 1 = 𝑥 ) |
| 7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 8 |
6 7
|
eqeltrrdi |
⊢ ( 𝑥 = 1 → 𝑥 ∈ ℂ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑥 ∈ ℂ ) |
| 10 |
|
simpr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑦 = e ) |
| 11 |
|
df-e |
⊢ e = ( exp ‘ 1 ) |
| 12 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 13 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 14 |
12 13
|
sstri |
⊢ ℝ+ ⊆ ℂ |
| 15 |
14 3
|
sselii |
⊢ e ∈ ℂ |
| 16 |
11 15
|
eqeltrri |
⊢ ( exp ‘ 1 ) ∈ ℂ |
| 17 |
16
|
mullidi |
⊢ ( 1 · ( exp ‘ 1 ) ) = ( exp ‘ 1 ) |
| 18 |
17 11
|
eqtr4i |
⊢ ( 1 · ( exp ‘ 1 ) ) = e |
| 19 |
6
|
fveq2d |
⊢ ( 𝑥 = 1 → ( exp ‘ 1 ) = ( exp ‘ 𝑥 ) ) |
| 20 |
6 19
|
oveq12d |
⊢ ( 𝑥 = 1 → ( 1 · ( exp ‘ 1 ) ) = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 21 |
18 20
|
eqtr3id |
⊢ ( 𝑥 = 1 → e = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → e = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 23 |
10 22
|
eqtrd |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 24 |
9 23
|
jca |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ) |
| 25 |
|
tbtru |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) ) |
| 26 |
24 25
|
sylib |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = e ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) ) |
| 27 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } |
| 28 |
2 4 26 27
|
braba |
⊢ ( 1 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ⊤ ) |
| 29 |
|
tbtru |
⊢ ( 1 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ( 1 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ⊤ ) ) |
| 30 |
28 29
|
mpbir |
⊢ 1 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e |
| 31 |
|
df-mpt |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } |
| 32 |
31
|
breqi |
⊢ ( 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e ↔ 1 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ) |
| 33 |
30 32
|
mpbir |
⊢ 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e |
| 34 |
4 2
|
brcnv |
⊢ ( e ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1 ↔ 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e ) |
| 35 |
33 34
|
mpbir |
⊢ e ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1 |
| 36 |
1
|
breqi |
⊢ ( e 𝑅 1 ↔ e ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1 ) |
| 37 |
35 36
|
mpbir |
⊢ e 𝑅 1 |