Metamath Proof Explorer


Theorem lamberte

Description: A value of Lambert W (product logarithm) function at _e . (Contributed by Ender Ting, 13-Nov-2025)

Ref Expression
Hypothesis lamberte.1 𝑅 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) )
Assertion lamberte e 𝑅 1

Proof

Step Hyp Ref Expression
1 lamberte.1 𝑅 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) )
2 1ex 1 ∈ V
3 epr e ∈ ℝ+
4 3 elexi e ∈ V
5 eqcom ( 𝑥 = 1 ↔ 1 = 𝑥 )
6 5 biimpi ( 𝑥 = 1 → 1 = 𝑥 )
7 ax-1cn 1 ∈ ℂ
8 6 7 eqeltrrdi ( 𝑥 = 1 → 𝑥 ∈ ℂ )
9 8 adantr ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑥 ∈ ℂ )
10 simpr ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑦 = e )
11 df-e e = ( exp ‘ 1 )
12 rpssre + ⊆ ℝ
13 ax-resscn ℝ ⊆ ℂ
14 12 13 sstri + ⊆ ℂ
15 14 3 sselii e ∈ ℂ
16 11 15 eqeltrri ( exp ‘ 1 ) ∈ ℂ
17 16 mullidi ( 1 · ( exp ‘ 1 ) ) = ( exp ‘ 1 )
18 17 11 eqtr4i ( 1 · ( exp ‘ 1 ) ) = e
19 6 fveq2d ( 𝑥 = 1 → ( exp ‘ 1 ) = ( exp ‘ 𝑥 ) )
20 6 19 oveq12d ( 𝑥 = 1 → ( 1 · ( exp ‘ 1 ) ) = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
21 18 20 eqtr3id ( 𝑥 = 1 → e = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
22 21 adantr ( ( 𝑥 = 1 ∧ 𝑦 = e ) → e = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
23 10 22 eqtrd ( ( 𝑥 = 1 ∧ 𝑦 = e ) → 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
24 9 23 jca ( ( 𝑥 = 1 ∧ 𝑦 = e ) → ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) )
25 tbtru ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) )
26 24 25 sylib ( ( 𝑥 = 1 ∧ 𝑦 = e ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) )
27 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) }
28 2 4 26 27 braba ( 1 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ⊤ )
29 tbtru ( 1 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ( 1 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e ↔ ⊤ ) )
30 28 29 mpbir 1 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e
31 df-mpt ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) }
32 31 breqi ( 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e ↔ 1 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } e )
33 30 32 mpbir 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e
34 4 2 brcnv ( e ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1 ↔ 1 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) e )
35 33 34 mpbir e ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1
36 1 breqi ( e 𝑅 1 ↔ e ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 1 )
37 35 36 mpbir e 𝑅 1