Metamath Proof Explorer


Theorem lambert0

Description: A value of Lambert W (product logarithm) function at zero. (Contributed by Ender Ting, 13-Nov-2025)

Ref Expression
Hypothesis lambert0.1 𝑅 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) )
Assertion lambert0 0 𝑅 0

Proof

Step Hyp Ref Expression
1 lambert0.1 𝑅 = ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) )
2 c0ex 0 ∈ V
3 eqcom ( 𝑥 = 0 ↔ 0 = 𝑥 )
4 3 biimpi ( 𝑥 = 0 → 0 = 𝑥 )
5 0cnd ( 𝑥 = 0 → 0 ∈ ℂ )
6 4 5 eqeltrrd ( 𝑥 = 0 → 𝑥 ∈ ℂ )
7 6 adantr ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑥 ∈ ℂ )
8 simpr ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑦 = 0 )
9 ef0 ( exp ‘ 0 ) = 1
10 ax-1cn 1 ∈ ℂ
11 9 10 eqeltri ( exp ‘ 0 ) ∈ ℂ
12 11 mul02i ( 0 · ( exp ‘ 0 ) ) = 0
13 4 fveq2d ( 𝑥 = 0 → ( exp ‘ 0 ) = ( exp ‘ 𝑥 ) )
14 4 13 oveq12d ( 𝑥 = 0 → ( 0 · ( exp ‘ 0 ) ) = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
15 12 14 eqtr3id ( 𝑥 = 0 → 0 = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
16 15 adantr ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 0 = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
17 8 16 eqtrd ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) )
18 7 17 jca ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) )
19 tbtru ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) )
20 18 19 sylib ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) )
21 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) }
22 2 2 20 21 braba ( 0 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ⊤ )
23 tbtru ( 0 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ( 0 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ⊤ ) )
24 22 23 mpbir 0 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0
25 df-mpt ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) }
26 25 breqi ( 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ↔ 0 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 )
27 24 26 mpbir 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0
28 2 2 brcnv ( 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ↔ 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 )
29 27 28 mpbir 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0
30 1 breqi ( 0 𝑅 0 ↔ 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 )
31 29 30 mpbir 0 𝑅 0