| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lambert0.1 |
⊢ 𝑅 = ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 2 |
|
c0ex |
⊢ 0 ∈ V |
| 3 |
|
eqcom |
⊢ ( 𝑥 = 0 ↔ 0 = 𝑥 ) |
| 4 |
3
|
biimpi |
⊢ ( 𝑥 = 0 → 0 = 𝑥 ) |
| 5 |
|
0cnd |
⊢ ( 𝑥 = 0 → 0 ∈ ℂ ) |
| 6 |
4 5
|
eqeltrrd |
⊢ ( 𝑥 = 0 → 𝑥 ∈ ℂ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑥 ∈ ℂ ) |
| 8 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
| 9 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
| 10 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 11 |
9 10
|
eqeltri |
⊢ ( exp ‘ 0 ) ∈ ℂ |
| 12 |
11
|
mul02i |
⊢ ( 0 · ( exp ‘ 0 ) ) = 0 |
| 13 |
4
|
fveq2d |
⊢ ( 𝑥 = 0 → ( exp ‘ 0 ) = ( exp ‘ 𝑥 ) ) |
| 14 |
4 13
|
oveq12d |
⊢ ( 𝑥 = 0 → ( 0 · ( exp ‘ 0 ) ) = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 15 |
12 14
|
eqtr3id |
⊢ ( 𝑥 = 0 → 0 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 0 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 17 |
8 16
|
eqtrd |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) |
| 18 |
7 17
|
jca |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ) |
| 19 |
|
tbtru |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) ↔ ⊤ ) ) |
| 21 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } |
| 22 |
2 2 20 21
|
braba |
⊢ ( 0 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ⊤ ) |
| 23 |
|
tbtru |
⊢ ( 0 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ( 0 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ↔ ⊤ ) ) |
| 24 |
22 23
|
mpbir |
⊢ 0 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 |
| 25 |
|
df-mpt |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } |
| 26 |
25
|
breqi |
⊢ ( 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ↔ 0 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℂ ∧ 𝑦 = ( 𝑥 · ( exp ‘ 𝑥 ) ) ) } 0 ) |
| 27 |
24 26
|
mpbir |
⊢ 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 |
| 28 |
2 2
|
brcnv |
⊢ ( 0 ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ↔ 0 ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ) |
| 29 |
27 28
|
mpbir |
⊢ 0 ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 |
| 30 |
1
|
breqi |
⊢ ( 0 𝑅 0 ↔ 0 ◡ ( 𝑥 ∈ ℂ ↦ ( 𝑥 · ( exp ‘ 𝑥 ) ) ) 0 ) |
| 31 |
29 30
|
mpbir |
⊢ 0 𝑅 0 |