| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latabs1.b |
|- B = ( Base ` K ) |
| 2 |
|
latabs1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
latabs1.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 5 |
1 4 3
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) ( le ` K ) X ) |
| 6 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 7 |
1 4 2
|
latleeqj2 |
|- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ X e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 8 |
7
|
3com23 |
|- ( ( K e. Lat /\ X e. B /\ ( X ./\ Y ) e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 9 |
6 8
|
syld3an3 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( ( X ./\ Y ) ( le ` K ) X <-> ( X .\/ ( X ./\ Y ) ) = X ) ) |
| 10 |
5 9
|
mpbid |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ ( X ./\ Y ) ) = X ) |