Step |
Hyp |
Ref |
Expression |
1 |
|
0le0 |
|- 0 <_ 0 |
2 |
|
hmopf |
|- ( T e. HrmOp -> T : ~H --> ~H ) |
3 |
|
hodid |
|- ( T : ~H --> ~H -> ( T -op T ) = 0hop ) |
4 |
2 3
|
syl |
|- ( T e. HrmOp -> ( T -op T ) = 0hop ) |
5 |
4
|
adantr |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( T -op T ) = 0hop ) |
6 |
5
|
fveq1d |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T -op T ) ` x ) = ( 0hop ` x ) ) |
7 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
8 |
7
|
adantl |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( 0hop ` x ) = 0h ) |
9 |
6 8
|
eqtrd |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( T -op T ) ` x ) = 0h ) |
10 |
9
|
oveq1d |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( ( ( T -op T ) ` x ) .ih x ) = ( 0h .ih x ) ) |
11 |
|
hi01 |
|- ( x e. ~H -> ( 0h .ih x ) = 0 ) |
12 |
11
|
adantl |
|- ( ( T e. HrmOp /\ x e. ~H ) -> ( 0h .ih x ) = 0 ) |
13 |
10 12
|
eqtr2d |
|- ( ( T e. HrmOp /\ x e. ~H ) -> 0 = ( ( ( T -op T ) ` x ) .ih x ) ) |
14 |
1 13
|
breqtrid |
|- ( ( T e. HrmOp /\ x e. ~H ) -> 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
15 |
14
|
ralrimiva |
|- ( T e. HrmOp -> A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) |
16 |
|
leop |
|- ( ( T e. HrmOp /\ T e. HrmOp ) -> ( T <_op T <-> A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) |
17 |
16
|
anidms |
|- ( T e. HrmOp -> ( T <_op T <-> A. x e. ~H 0 <_ ( ( ( T -op T ) ` x ) .ih x ) ) ) |
18 |
15 17
|
mpbird |
|- ( T e. HrmOp -> T <_op T ) |