Metamath Proof Explorer


Theorem leoprf

Description: The ordering relation for operators is reflexive. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf T HrmOp T op T

Proof

Step Hyp Ref Expression
1 0le0 0 0
2 hmopf T HrmOp T :
3 hodid T : T - op T = 0 hop
4 2 3 syl T HrmOp T - op T = 0 hop
5 4 adantr T HrmOp x T - op T = 0 hop
6 5 fveq1d T HrmOp x T - op T x = 0 hop x
7 ho0val x 0 hop x = 0
8 7 adantl T HrmOp x 0 hop x = 0
9 6 8 eqtrd T HrmOp x T - op T x = 0
10 9 oveq1d T HrmOp x T - op T x ih x = 0 ih x
11 hi01 x 0 ih x = 0
12 11 adantl T HrmOp x 0 ih x = 0
13 10 12 eqtr2d T HrmOp x 0 = T - op T x ih x
14 1 13 breqtrid T HrmOp x 0 T - op T x ih x
15 14 ralrimiva T HrmOp x 0 T - op T x ih x
16 leop T HrmOp T HrmOp T op T x 0 T - op T x ih x
17 16 anidms T HrmOp T op T x 0 T - op T x ih x
18 15 17 mpbird T HrmOp T op T