Metamath Proof Explorer


Theorem leoprf

Description: The ordering relation for operators is reflexive. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leoprf ( 𝑇 ∈ HrmOp → 𝑇op 𝑇 )

Proof

Step Hyp Ref Expression
1 0le0 0 ≤ 0
2 hmopf ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ )
3 hodid ( 𝑇 : ℋ ⟶ ℋ → ( 𝑇op 𝑇 ) = 0hop )
4 2 3 syl ( 𝑇 ∈ HrmOp → ( 𝑇op 𝑇 ) = 0hop )
5 4 adantr ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 𝑇op 𝑇 ) = 0hop )
6 5 fveq1d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) = ( 0hop𝑥 ) )
7 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
8 7 adantl ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 0hop𝑥 ) = 0 )
9 6 8 eqtrd ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) = 0 )
10 9 oveq1d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) = ( 0 ·ih 𝑥 ) )
11 hi01 ( 𝑥 ∈ ℋ → ( 0 ·ih 𝑥 ) = 0 )
12 11 adantl ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → ( 0 ·ih 𝑥 ) = 0 )
13 10 12 eqtr2d ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 = ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
14 1 13 breqtrid ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ) → 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
15 14 ralrimiva ( 𝑇 ∈ HrmOp → ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) )
16 leop ( ( 𝑇 ∈ HrmOp ∧ 𝑇 ∈ HrmOp ) → ( 𝑇op 𝑇 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
17 16 anidms ( 𝑇 ∈ HrmOp → ( 𝑇op 𝑇 ↔ ∀ 𝑥 ∈ ℋ 0 ≤ ( ( ( 𝑇op 𝑇 ) ‘ 𝑥 ) ·ih 𝑥 ) ) )
18 15 17 mpbird ( 𝑇 ∈ HrmOp → 𝑇op 𝑇 )