| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 2 |  | eqid |  |-  ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) = ( m e. NN |-> if ( m e. Prime , ( if ( m = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( m - 1 ) / 2 ) ) + 1 ) mod m ) - 1 ) ) ^ ( m pCnt n ) ) , 1 ) ) | 
						
							| 3 | 2 | lgsval2lem |  |-  ( ( A e. ZZ /\ n e. Prime ) -> ( A /L n ) = if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ) | 
						
							| 4 | 3 | 3ad2antl1 |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( A /L n ) = if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) /\ n e. Prime ) -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) ) | 
						
							| 6 | 5 | ifeq1da |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 7 | 6 | mpteq2dv |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) ) | 
						
							| 8 | 1 7 | eqtr4id |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) |