| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 2 |  | prmz |  |-  ( N e. Prime -> N e. ZZ ) | 
						
							| 3 | 1 | lgsval |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) = if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( A /L N ) = if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) ) | 
						
							| 5 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 6 | 5 | adantl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. NN ) | 
						
							| 7 | 6 | nnne0d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N =/= 0 ) | 
						
							| 8 | 7 | neneqd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> -. N = 0 ) | 
						
							| 9 | 8 | iffalsed |  |-  ( ( A e. ZZ /\ N e. Prime ) -> if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) | 
						
							| 10 | 6 | nnnn0d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. NN0 ) | 
						
							| 11 | 10 | nn0ge0d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> 0 <_ N ) | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 | 6 | nnred |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. RR ) | 
						
							| 14 |  | lenlt |  |-  ( ( 0 e. RR /\ N e. RR ) -> ( 0 <_ N <-> -. N < 0 ) ) | 
						
							| 15 | 12 13 14 | sylancr |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( 0 <_ N <-> -. N < 0 ) ) | 
						
							| 16 | 11 15 | mpbid |  |-  ( ( A e. ZZ /\ N e. Prime ) -> -. N < 0 ) | 
						
							| 17 | 16 | intnanrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> -. ( N < 0 /\ A < 0 ) ) | 
						
							| 18 | 17 | iffalsed |  |-  ( ( A e. ZZ /\ N e. Prime ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 19 | 13 11 | absidd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( abs ` N ) = N ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( seq 1 ( x. , F ) ` ( abs ` N ) ) = ( seq 1 ( x. , F ) ` N ) ) | 
						
							| 21 |  | 1z |  |-  1 e. ZZ | 
						
							| 22 |  | prmuz2 |  |-  ( N e. Prime -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. ( ZZ>= ` 2 ) ) | 
						
							| 24 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 25 | 24 | fveq2i |  |-  ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) | 
						
							| 26 | 23 25 | eleqtrdi |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 27 |  | seqm1 |  |-  ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 + 1 ) ) ) -> ( seq 1 ( x. , F ) ` N ) = ( ( seq 1 ( x. , F ) ` ( N - 1 ) ) x. ( F ` N ) ) ) | 
						
							| 28 | 21 26 27 | sylancr |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( seq 1 ( x. , F ) ` N ) = ( ( seq 1 ( x. , F ) ` ( N - 1 ) ) x. ( F ` N ) ) ) | 
						
							| 29 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 30 | 29 | a1i |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( 1 x. 1 ) = 1 ) | 
						
							| 31 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 32 | 23 31 | syl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N - 1 ) e. NN ) | 
						
							| 33 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 34 | 32 33 | eleqtrdi |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 35 |  | elfznn |  |-  ( x e. ( 1 ... ( N - 1 ) ) -> x e. NN ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) -> x e. NN ) | 
						
							| 37 | 1 | lgsfval |  |-  ( x e. NN -> ( F ` x ) = if ( x e. Prime , ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) , 1 ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) -> ( F ` x ) = if ( x e. Prime , ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) , 1 ) ) | 
						
							| 39 |  | elfzelz |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N e. ZZ ) | 
						
							| 40 | 39 | zred |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N e. RR ) | 
						
							| 41 | 40 | ltm1d |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) < N ) | 
						
							| 42 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 43 | 40 42 | syl |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) e. RR ) | 
						
							| 44 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 45 | 40 43 44 | lensymd |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> -. ( N - 1 ) < N ) | 
						
							| 46 | 41 45 | pm2.65i |  |-  -. N e. ( 1 ... ( N - 1 ) ) | 
						
							| 47 |  | eleq1 |  |-  ( x = N -> ( x e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 48 | 46 47 | mtbiri |  |-  ( x = N -> -. x e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 49 | 48 | con2i |  |-  ( x e. ( 1 ... ( N - 1 ) ) -> -. x = N ) | 
						
							| 50 | 49 | ad2antlr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> -. x = N ) | 
						
							| 51 |  | prmuz2 |  |-  ( x e. Prime -> x e. ( ZZ>= ` 2 ) ) | 
						
							| 52 |  | simpllr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> N e. Prime ) | 
						
							| 53 |  | dvdsprm |  |-  ( ( x e. ( ZZ>= ` 2 ) /\ N e. Prime ) -> ( x || N <-> x = N ) ) | 
						
							| 54 | 51 52 53 | syl2an2 |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( x || N <-> x = N ) ) | 
						
							| 55 | 50 54 | mtbird |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> -. x || N ) | 
						
							| 56 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> x e. Prime ) | 
						
							| 57 | 6 | ad2antrr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> N e. NN ) | 
						
							| 58 |  | pceq0 |  |-  ( ( x e. Prime /\ N e. NN ) -> ( ( x pCnt N ) = 0 <-> -. x || N ) ) | 
						
							| 59 | 56 57 58 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( ( x pCnt N ) = 0 <-> -. x || N ) ) | 
						
							| 60 | 55 59 | mpbird |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( x pCnt N ) = 0 ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) = ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ 0 ) ) | 
						
							| 62 |  | 0z |  |-  0 e. ZZ | 
						
							| 63 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 64 | 21 63 | ifcli |  |-  if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) e. ZZ | 
						
							| 65 | 62 64 | ifcli |  |-  if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) e. ZZ | 
						
							| 66 | 65 | a1i |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ x = 2 ) -> if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) e. ZZ ) | 
						
							| 67 |  | simpl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> A e. ZZ ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> A e. ZZ ) | 
						
							| 69 |  | simplr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> x e. Prime ) | 
						
							| 70 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> -. x = 2 ) | 
						
							| 71 | 70 | neqned |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> x =/= 2 ) | 
						
							| 72 |  | eldifsn |  |-  ( x e. ( Prime \ { 2 } ) <-> ( x e. Prime /\ x =/= 2 ) ) | 
						
							| 73 | 69 71 72 | sylanbrc |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> x e. ( Prime \ { 2 } ) ) | 
						
							| 74 |  | oddprm |  |-  ( x e. ( Prime \ { 2 } ) -> ( ( x - 1 ) / 2 ) e. NN ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( x - 1 ) / 2 ) e. NN ) | 
						
							| 76 | 75 | nnnn0d |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( x - 1 ) / 2 ) e. NN0 ) | 
						
							| 77 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( ( x - 1 ) / 2 ) e. NN0 ) -> ( A ^ ( ( x - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 78 | 68 76 77 | syl2anc |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( A ^ ( ( x - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 79 | 78 | peano2zd |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) e. ZZ ) | 
						
							| 80 |  | prmnn |  |-  ( x e. Prime -> x e. NN ) | 
						
							| 81 | 80 | ad2antlr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> x e. NN ) | 
						
							| 82 | 79 81 | zmodcld |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) e. NN0 ) | 
						
							| 83 | 82 | nn0zd |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) e. ZZ ) | 
						
							| 84 |  | peano2zm |  |-  ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) e. ZZ -> ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) e. ZZ ) | 
						
							| 85 | 83 84 | syl |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) /\ -. x = 2 ) -> ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) e. ZZ ) | 
						
							| 86 | 66 85 | ifclda |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) -> if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) e. ZZ ) | 
						
							| 87 | 86 | zcnd |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. Prime ) -> if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) e. CC ) | 
						
							| 88 | 87 | adantlr |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) e. CC ) | 
						
							| 89 | 88 | exp0d |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ 0 ) = 1 ) | 
						
							| 90 | 61 89 | eqtrd |  |-  ( ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) /\ x e. Prime ) -> ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) = 1 ) | 
						
							| 91 | 90 | ifeq1da |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) -> if ( x e. Prime , ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) , 1 ) = if ( x e. Prime , 1 , 1 ) ) | 
						
							| 92 |  | ifid |  |-  if ( x e. Prime , 1 , 1 ) = 1 | 
						
							| 93 | 91 92 | eqtrdi |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) -> if ( x e. Prime , ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) ^ ( x pCnt N ) ) , 1 ) = 1 ) | 
						
							| 94 | 38 93 | eqtrd |  |-  ( ( ( A e. ZZ /\ N e. Prime ) /\ x e. ( 1 ... ( N - 1 ) ) ) -> ( F ` x ) = 1 ) | 
						
							| 95 | 30 34 94 | seqid3 |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( seq 1 ( x. , F ) ` ( N - 1 ) ) = 1 ) | 
						
							| 96 | 95 | oveq1d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( ( seq 1 ( x. , F ) ` ( N - 1 ) ) x. ( F ` N ) ) = ( 1 x. ( F ` N ) ) ) | 
						
							| 97 | 2 | adantl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. ZZ ) | 
						
							| 98 | 1 | lgsfcl |  |-  ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> F : NN --> ZZ ) | 
						
							| 99 | 67 97 7 98 | syl3anc |  |-  ( ( A e. ZZ /\ N e. Prime ) -> F : NN --> ZZ ) | 
						
							| 100 | 99 6 | ffvelcdmd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( F ` N ) e. ZZ ) | 
						
							| 101 | 100 | zcnd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( F ` N ) e. CC ) | 
						
							| 102 | 101 | mullidd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( 1 x. ( F ` N ) ) = ( F ` N ) ) | 
						
							| 103 | 28 96 102 | 3eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( seq 1 ( x. , F ) ` N ) = ( F ` N ) ) | 
						
							| 104 | 20 103 | eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( seq 1 ( x. , F ) ` ( abs ` N ) ) = ( F ` N ) ) | 
						
							| 105 | 18 104 | oveq12d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) = ( 1 x. ( F ` N ) ) ) | 
						
							| 106 | 1 | lgsfval |  |-  ( N e. NN -> ( F ` N ) = if ( N e. Prime , ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) , 1 ) ) | 
						
							| 107 | 6 106 | syl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( F ` N ) = if ( N e. Prime , ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) , 1 ) ) | 
						
							| 108 |  | iftrue |  |-  ( N e. Prime -> if ( N e. Prime , ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) , 1 ) = ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) ) | 
						
							| 109 | 108 | adantl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> if ( N e. Prime , ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) , 1 ) = ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) ) | 
						
							| 110 | 6 | nncnd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. CC ) | 
						
							| 111 | 110 | exp1d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N ^ 1 ) = N ) | 
						
							| 112 | 111 | oveq2d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N pCnt ( N ^ 1 ) ) = ( N pCnt N ) ) | 
						
							| 113 |  | simpr |  |-  ( ( A e. ZZ /\ N e. Prime ) -> N e. Prime ) | 
						
							| 114 |  | pcid |  |-  ( ( N e. Prime /\ 1 e. ZZ ) -> ( N pCnt ( N ^ 1 ) ) = 1 ) | 
						
							| 115 | 113 21 114 | sylancl |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N pCnt ( N ^ 1 ) ) = 1 ) | 
						
							| 116 | 112 115 | eqtr3d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( N pCnt N ) = 1 ) | 
						
							| 117 | 116 | oveq2d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) = ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ 1 ) ) | 
						
							| 118 |  | eqeq1 |  |-  ( x = N -> ( x = 2 <-> N = 2 ) ) | 
						
							| 119 |  | oveq1 |  |-  ( x = N -> ( x - 1 ) = ( N - 1 ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( x = N -> ( ( x - 1 ) / 2 ) = ( ( N - 1 ) / 2 ) ) | 
						
							| 121 | 120 | oveq2d |  |-  ( x = N -> ( A ^ ( ( x - 1 ) / 2 ) ) = ( A ^ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 122 | 121 | oveq1d |  |-  ( x = N -> ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) = ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 123 |  | id |  |-  ( x = N -> x = N ) | 
						
							| 124 | 122 123 | oveq12d |  |-  ( x = N -> ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) = ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) ) | 
						
							| 125 | 124 | oveq1d |  |-  ( x = N -> ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) = ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) | 
						
							| 126 | 118 125 | ifbieq2d |  |-  ( x = N -> if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) | 
						
							| 127 | 126 | eleq1d |  |-  ( x = N -> ( if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) e. CC <-> if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) e. CC ) ) | 
						
							| 128 | 87 | ralrimiva |  |-  ( ( A e. ZZ /\ N e. Prime ) -> A. x e. Prime if ( x = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( x - 1 ) / 2 ) ) + 1 ) mod x ) - 1 ) ) e. CC ) | 
						
							| 129 | 127 128 113 | rspcdva |  |-  ( ( A e. ZZ /\ N e. Prime ) -> if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) e. CC ) | 
						
							| 130 | 129 | exp1d |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ 1 ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) | 
						
							| 131 | 117 130 | eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ^ ( N pCnt N ) ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) | 
						
							| 132 | 107 109 131 | 3eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( F ` N ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) | 
						
							| 133 | 105 102 132 | 3eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) | 
						
							| 134 | 4 9 133 | 3eqtrd |  |-  ( ( A e. ZZ /\ N e. Prime ) -> ( A /L N ) = if ( N = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( N - 1 ) / 2 ) ) + 1 ) mod N ) - 1 ) ) ) |