Step |
Hyp |
Ref |
Expression |
1 |
|
lhpex1.l |
|- .<_ = ( le ` K ) |
2 |
|
lhpex1.a |
|- A = ( Atoms ` K ) |
3 |
|
lhpex1.h |
|- H = ( LHyp ` K ) |
4 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) ) |
5 |
|
3anass |
|- ( ( p .<_ W /\ p =/= X /\ p =/= Y ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
6 |
5
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Y ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
7 |
4 6
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) ) ) |
8 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) ) |
9 |
8
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) ) |
10 |
|
3anass |
|- ( ( p .<_ W /\ p =/= X /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
11 |
10
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= X /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
12 |
9 11
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) ) ) |
13 |
1 2 3
|
lhpexle2 |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ p =/= Y /\ p =/= Z ) ) |
14 |
|
3anass |
|- ( ( p .<_ W /\ p =/= Y /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
15 |
14
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ p =/= Y /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
16 |
13 15
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) ) ) |
18 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Y e. A ) |
20 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Z e. A ) |
21 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> X e. A ) |
22 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Y .<_ W ) |
23 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> Z .<_ W ) |
24 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> X .<_ W ) |
25 |
1 2 3
|
lhpexle3lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Y e. A /\ Z e. A /\ X e. A ) /\ ( Y .<_ W /\ Z .<_ W /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) ) |
26 |
18 19 20 21 22 23 24 25
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) ) |
27 |
|
df-3an |
|- ( ( p =/= Y /\ p =/= Z /\ p =/= X ) <-> ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
28 |
27
|
anbi2i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) ) |
29 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) ) |
30 |
28 29
|
bitr4i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
31 |
30
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z /\ p =/= X ) ) <-> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
32 |
26 31
|
sylib |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) /\ ( X e. A /\ X .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
33 |
17 32
|
lhpexle1lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) |
34 |
|
an31 |
|- ( ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
35 |
34
|
anbi2i |
|- ( ( p .<_ W /\ ( ( p =/= Y /\ p =/= Z ) /\ p =/= X ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) ) |
36 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) ) |
37 |
35 29 36
|
3bitr4i |
|- ( ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
38 |
37
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= Y /\ p =/= Z ) /\ p =/= X ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
39 |
33 38
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
40 |
39
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) /\ ( Y e. A /\ Y .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
41 |
12 40
|
lhpexle1lem |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) |
42 |
|
an32 |
|- ( ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
43 |
42
|
anbi2i |
|- ( ( p .<_ W /\ ( ( p =/= X /\ p =/= Z ) /\ p =/= Y ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
44 |
|
3anass |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
45 |
43 36 44
|
3bitr4i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
46 |
45
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Z ) /\ p =/= Y ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
47 |
41 46
|
sylib |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Z e. A /\ Z .<_ W ) ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
48 |
7 47
|
lhpexle1lem |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
49 |
|
df-3an |
|- ( ( p =/= X /\ p =/= Y /\ p =/= Z ) <-> ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) |
50 |
49
|
anbi2i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) <-> ( p .<_ W /\ ( ( p =/= X /\ p =/= Y ) /\ p =/= Z ) ) ) |
51 |
44 50
|
bitr4i |
|- ( ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |
52 |
51
|
rexbii |
|- ( E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y ) /\ p =/= Z ) <-> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |
53 |
48 52
|
sylib |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A ( p .<_ W /\ ( p =/= X /\ p =/= Y /\ p =/= Z ) ) ) |