Metamath Proof Explorer


Theorem lhpexlt

Description: There exists an atom less than a co-atom. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses lhpatltex.s
|- .< = ( lt ` K )
lhpatltex.a
|- A = ( Atoms ` K )
lhpatltex.h
|- H = ( LHyp ` K )
Assertion lhpexlt
|- ( ( K e. HL /\ W e. H ) -> E. p e. A p .< W )

Proof

Step Hyp Ref Expression
1 lhpatltex.s
 |-  .< = ( lt ` K )
2 lhpatltex.a
 |-  A = ( Atoms ` K )
3 lhpatltex.h
 |-  H = ( LHyp ` K )
4 simpl
 |-  ( ( K e. HL /\ W e. H ) -> K e. HL )
5 eqid
 |-  ( Base ` K ) = ( Base ` K )
6 5 3 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
7 6 adantl
 |-  ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) )
8 eqid
 |-  ( 1. ` K ) = ( 1. ` K )
9 eqid
 |-  ( 
10 8 9 3 lhp1cvr
 |-  ( ( K e. HL /\ W e. H ) -> W ( 
11 5 1 8 9 2 1cvratex
 |-  ( ( K e. HL /\ W e. ( Base ` K ) /\ W (  E. p e. A p .< W )
12 4 7 10 11 syl3anc
 |-  ( ( K e. HL /\ W e. H ) -> E. p e. A p .< W )