Step |
Hyp |
Ref |
Expression |
1 |
|
lhpatltex.s |
|- .< = ( lt ` K ) |
2 |
|
lhpatltex.a |
|- A = ( Atoms ` K ) |
3 |
|
lhpatltex.h |
|- H = ( LHyp ` K ) |
4 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
5 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
6 |
5 3
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
7 |
6
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
8 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
9 |
|
eqid |
|- ( |
10 |
8 9 3
|
lhp1cvr |
|- ( ( K e. HL /\ W e. H ) -> W ( |
11 |
5 1 8 9 2
|
1cvratex |
|- ( ( K e. HL /\ W e. ( Base ` K ) /\ W ( E. p e. A p .< W ) |
12 |
4 7 10 11
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> E. p e. A p .< W ) |