Metamath Proof Explorer


Theorem lidlincl

Description: Ideals are closed under intersection. (Contributed by Thierry Arnoux, 5-Jul-2024)

Ref Expression
Hypothesis lidlincl.1
|- U = ( LIdeal ` R )
Assertion lidlincl
|- ( ( R e. Ring /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U )

Proof

Step Hyp Ref Expression
1 lidlincl.1
 |-  U = ( LIdeal ` R )
2 eqid
 |-  ( Base ` R ) = ( Base ` R )
3 2 1 lidlacs
 |-  ( R e. Ring -> U e. ( ACS ` ( Base ` R ) ) )
4 3 acsmred
 |-  ( R e. Ring -> U e. ( Moore ` ( Base ` R ) ) )
5 mreincl
 |-  ( ( U e. ( Moore ` ( Base ` R ) ) /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U )
6 4 5 syl3an1
 |-  ( ( R e. Ring /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U )