Description: Ideals are closed under intersection. (Contributed by Thierry Arnoux, 5-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lidlincl.1 | |- U = ( LIdeal ` R ) |
|
Assertion | lidlincl | |- ( ( R e. Ring /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlincl.1 | |- U = ( LIdeal ` R ) |
|
2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
3 | 2 1 | lidlacs | |- ( R e. Ring -> U e. ( ACS ` ( Base ` R ) ) ) |
4 | 3 | acsmred | |- ( R e. Ring -> U e. ( Moore ` ( Base ` R ) ) ) |
5 | mreincl | |- ( ( U e. ( Moore ` ( Base ` R ) ) /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U ) |
|
6 | 4 5 | syl3an1 | |- ( ( R e. Ring /\ I e. U /\ J e. U ) -> ( I i^i J ) e. U ) |