Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Ideals
lidlincl
Next ⟩
idlinsubrg
Metamath Proof Explorer
Ascii
Unicode
Theorem
lidlincl
Description:
Ideals are closed under intersection.
(Contributed by
Thierry Arnoux
, 5-Jul-2024)
Ref
Expression
Hypothesis
lidlincl.1
⊢
U
=
LIdeal
⁡
R
Assertion
lidlincl
⊢
R
∈
Ring
∧
I
∈
U
∧
J
∈
U
→
I
∩
J
∈
U
Proof
Step
Hyp
Ref
Expression
1
lidlincl.1
⊢
U
=
LIdeal
⁡
R
2
eqid
⊢
Base
R
=
Base
R
3
2
1
lidlacs
⊢
R
∈
Ring
→
U
∈
ACS
⁡
Base
R
4
3
acsmred
⊢
R
∈
Ring
→
U
∈
Moore
⁡
Base
R
5
mreincl
⊢
U
∈
Moore
⁡
Base
R
∧
I
∈
U
∧
J
∈
U
→
I
∩
J
∈
U
6
4
5
syl3an1
⊢
R
∈
Ring
∧
I
∈
U
∧
J
∈
U
→
I
∩
J
∈
U