| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlinsubrg.s |
|
| 2 |
|
idlinsubrg.u |
|
| 3 |
|
idlinsubrg.v |
|
| 4 |
|
inss2 |
|
| 5 |
1
|
subrgbas |
|
| 6 |
4 5
|
sseqtrid |
|
| 7 |
6
|
adantr |
|
| 8 |
|
subrgrcl |
|
| 9 |
|
eqid |
|
| 10 |
2 9
|
lidl0cl |
|
| 11 |
8 10
|
sylan |
|
| 12 |
|
subrgsubg |
|
| 13 |
|
subgsubm |
|
| 14 |
9
|
subm0cl |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
15
|
adantr |
|
| 17 |
11 16
|
elind |
|
| 18 |
17
|
ne0d |
|
| 19 |
|
eqid |
|
| 20 |
1 19
|
ressplusg |
|
| 21 |
|
eqid |
|
| 22 |
1 21
|
ressmulr |
|
| 23 |
22
|
oveqd |
|
| 24 |
|
eqidd |
|
| 25 |
20 23 24
|
oveq123d |
|
| 26 |
25
|
ad4antr |
|
| 27 |
8
|
ad4antr |
|
| 28 |
|
simp-4r |
|
| 29 |
|
eqid |
|
| 30 |
29
|
subrgss |
|
| 31 |
5 30
|
eqsstrrd |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
sselda |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
|
inss1 |
|
| 36 |
35
|
a1i |
|
| 37 |
36
|
sselda |
|
| 38 |
37
|
adantr |
|
| 39 |
2 29 21
|
lidlmcl |
|
| 40 |
27 28 34 38 39
|
syl22anc |
|
| 41 |
35
|
a1i |
|
| 42 |
41
|
sselda |
|
| 43 |
2 19
|
lidlacl |
|
| 44 |
27 28 40 42 43
|
syl22anc |
|
| 45 |
|
simp-4l |
|
| 46 |
|
simpr |
|
| 47 |
5
|
ad2antrr |
|
| 48 |
46 47
|
eleqtrrd |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
4
|
a1i |
|
| 51 |
50
|
sselda |
|
| 52 |
51
|
adantr |
|
| 53 |
21
|
subrgmcl |
|
| 54 |
45 49 52 53
|
syl3anc |
|
| 55 |
4
|
a1i |
|
| 56 |
55
|
sselda |
|
| 57 |
19
|
subrgacl |
|
| 58 |
45 54 56 57
|
syl3anc |
|
| 59 |
44 58
|
elind |
|
| 60 |
26 59
|
eqeltrrd |
|
| 61 |
60
|
anasss |
|
| 62 |
61
|
ralrimivva |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
eqid |
|
| 65 |
|
eqid |
|
| 66 |
|
eqid |
|
| 67 |
3 64 65 66
|
islidl |
|
| 68 |
7 18 63 67
|
syl3anbrc |
|