| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlinsubrg.s |
|- S = ( R |`s A ) |
| 2 |
|
idlinsubrg.u |
|- U = ( LIdeal ` R ) |
| 3 |
|
idlinsubrg.v |
|- V = ( LIdeal ` S ) |
| 4 |
|
inss2 |
|- ( I i^i A ) C_ A |
| 5 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 6 |
4 5
|
sseqtrid |
|- ( A e. ( SubRing ` R ) -> ( I i^i A ) C_ ( Base ` S ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) C_ ( Base ` S ) ) |
| 8 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
| 9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 10 |
2 9
|
lidl0cl |
|- ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 11 |
8 10
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 12 |
|
subrgsubg |
|- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |
| 13 |
|
subgsubm |
|- ( A e. ( SubGrp ` R ) -> A e. ( SubMnd ` R ) ) |
| 14 |
9
|
subm0cl |
|- ( A e. ( SubMnd ` R ) -> ( 0g ` R ) e. A ) |
| 15 |
12 13 14
|
3syl |
|- ( A e. ( SubRing ` R ) -> ( 0g ` R ) e. A ) |
| 16 |
15
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. A ) |
| 17 |
11 16
|
elind |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. ( I i^i A ) ) |
| 18 |
17
|
ne0d |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) =/= (/) ) |
| 19 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 20 |
1 19
|
ressplusg |
|- ( A e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) |
| 21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 22 |
1 21
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 23 |
22
|
oveqd |
|- ( A e. ( SubRing ` R ) -> ( x ( .r ` R ) a ) = ( x ( .r ` S ) a ) ) |
| 24 |
|
eqidd |
|- ( A e. ( SubRing ` R ) -> b = b ) |
| 25 |
20 23 24
|
oveq123d |
|- ( A e. ( SubRing ` R ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
| 26 |
25
|
ad4antr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
| 27 |
8
|
ad4antr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> R e. Ring ) |
| 28 |
|
simp-4r |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> I e. U ) |
| 29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 30 |
29
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 31 |
5 30
|
eqsstrrd |
|- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 32 |
31
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 33 |
32
|
sselda |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` R ) ) |
| 34 |
33
|
ad2antrr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> x e. ( Base ` R ) ) |
| 35 |
|
inss1 |
|- ( I i^i A ) C_ I |
| 36 |
35
|
a1i |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> ( I i^i A ) C_ I ) |
| 37 |
36
|
sselda |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> a e. I ) |
| 38 |
37
|
adantr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> a e. I ) |
| 39 |
2 29 21
|
lidlmcl |
|- ( ( ( R e. Ring /\ I e. U ) /\ ( x e. ( Base ` R ) /\ a e. I ) ) -> ( x ( .r ` R ) a ) e. I ) |
| 40 |
27 28 34 38 39
|
syl22anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( x ( .r ` R ) a ) e. I ) |
| 41 |
35
|
a1i |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> ( I i^i A ) C_ I ) |
| 42 |
41
|
sselda |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> b e. I ) |
| 43 |
2 19
|
lidlacl |
|- ( ( ( R e. Ring /\ I e. U ) /\ ( ( x ( .r ` R ) a ) e. I /\ b e. I ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. I ) |
| 44 |
27 28 40 42 43
|
syl22anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. I ) |
| 45 |
|
simp-4l |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> A e. ( SubRing ` R ) ) |
| 46 |
|
simpr |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
| 47 |
5
|
ad2antrr |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> A = ( Base ` S ) ) |
| 48 |
46 47
|
eleqtrrd |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. A ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> x e. A ) |
| 50 |
4
|
a1i |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> ( I i^i A ) C_ A ) |
| 51 |
50
|
sselda |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> a e. A ) |
| 52 |
51
|
adantr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> a e. A ) |
| 53 |
21
|
subrgmcl |
|- ( ( A e. ( SubRing ` R ) /\ x e. A /\ a e. A ) -> ( x ( .r ` R ) a ) e. A ) |
| 54 |
45 49 52 53
|
syl3anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( x ( .r ` R ) a ) e. A ) |
| 55 |
4
|
a1i |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> ( I i^i A ) C_ A ) |
| 56 |
55
|
sselda |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> b e. A ) |
| 57 |
19
|
subrgacl |
|- ( ( A e. ( SubRing ` R ) /\ ( x ( .r ` R ) a ) e. A /\ b e. A ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. A ) |
| 58 |
45 54 56 57
|
syl3anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. A ) |
| 59 |
44 58
|
elind |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( I i^i A ) ) |
| 60 |
26 59
|
eqeltrrd |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
| 61 |
60
|
anasss |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ ( a e. ( I i^i A ) /\ b e. ( I i^i A ) ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
| 62 |
61
|
ralrimivva |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
| 63 |
62
|
ralrimiva |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> A. x e. ( Base ` S ) A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
| 64 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 65 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 66 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 67 |
3 64 65 66
|
islidl |
|- ( ( I i^i A ) e. V <-> ( ( I i^i A ) C_ ( Base ` S ) /\ ( I i^i A ) =/= (/) /\ A. x e. ( Base ` S ) A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) ) |
| 68 |
7 18 63 67
|
syl3anbrc |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) e. V ) |