Step |
Hyp |
Ref |
Expression |
1 |
|
idlinsubrg.s |
|- S = ( R |`s A ) |
2 |
|
idlinsubrg.u |
|- U = ( LIdeal ` R ) |
3 |
|
idlinsubrg.v |
|- V = ( LIdeal ` S ) |
4 |
|
inss2 |
|- ( I i^i A ) C_ A |
5 |
1
|
subrgbas |
|- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
6 |
4 5
|
sseqtrid |
|- ( A e. ( SubRing ` R ) -> ( I i^i A ) C_ ( Base ` S ) ) |
7 |
6
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) C_ ( Base ` S ) ) |
8 |
|
subrgrcl |
|- ( A e. ( SubRing ` R ) -> R e. Ring ) |
9 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
10 |
2 9
|
lidl0cl |
|- ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) |
11 |
8 10
|
sylan |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. I ) |
12 |
|
subrgsubg |
|- ( A e. ( SubRing ` R ) -> A e. ( SubGrp ` R ) ) |
13 |
|
subgsubm |
|- ( A e. ( SubGrp ` R ) -> A e. ( SubMnd ` R ) ) |
14 |
9
|
subm0cl |
|- ( A e. ( SubMnd ` R ) -> ( 0g ` R ) e. A ) |
15 |
12 13 14
|
3syl |
|- ( A e. ( SubRing ` R ) -> ( 0g ` R ) e. A ) |
16 |
15
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. A ) |
17 |
11 16
|
elind |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( 0g ` R ) e. ( I i^i A ) ) |
18 |
17
|
ne0d |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) =/= (/) ) |
19 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
20 |
1 19
|
ressplusg |
|- ( A e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` S ) ) |
21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
22 |
1 21
|
ressmulr |
|- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
23 |
22
|
oveqd |
|- ( A e. ( SubRing ` R ) -> ( x ( .r ` R ) a ) = ( x ( .r ` S ) a ) ) |
24 |
|
eqidd |
|- ( A e. ( SubRing ` R ) -> b = b ) |
25 |
20 23 24
|
oveq123d |
|- ( A e. ( SubRing ` R ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
26 |
25
|
ad4antr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
27 |
8
|
ad4antr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> R e. Ring ) |
28 |
|
simp-4r |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> I e. U ) |
29 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
30 |
29
|
subrgss |
|- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
31 |
5 30
|
eqsstrrd |
|- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
32 |
31
|
adantr |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( Base ` S ) C_ ( Base ` R ) ) |
33 |
32
|
sselda |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` R ) ) |
34 |
33
|
ad2antrr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> x e. ( Base ` R ) ) |
35 |
|
inss1 |
|- ( I i^i A ) C_ I |
36 |
35
|
a1i |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> ( I i^i A ) C_ I ) |
37 |
36
|
sselda |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> a e. I ) |
38 |
37
|
adantr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> a e. I ) |
39 |
2 29 21
|
lidlmcl |
|- ( ( ( R e. Ring /\ I e. U ) /\ ( x e. ( Base ` R ) /\ a e. I ) ) -> ( x ( .r ` R ) a ) e. I ) |
40 |
27 28 34 38 39
|
syl22anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( x ( .r ` R ) a ) e. I ) |
41 |
35
|
a1i |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> ( I i^i A ) C_ I ) |
42 |
41
|
sselda |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> b e. I ) |
43 |
2 19
|
lidlacl |
|- ( ( ( R e. Ring /\ I e. U ) /\ ( ( x ( .r ` R ) a ) e. I /\ b e. I ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. I ) |
44 |
27 28 40 42 43
|
syl22anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. I ) |
45 |
|
simp-4l |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> A e. ( SubRing ` R ) ) |
46 |
|
simpr |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
47 |
5
|
ad2antrr |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> A = ( Base ` S ) ) |
48 |
46 47
|
eleqtrrd |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> x e. A ) |
49 |
48
|
ad2antrr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> x e. A ) |
50 |
4
|
a1i |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> ( I i^i A ) C_ A ) |
51 |
50
|
sselda |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> a e. A ) |
52 |
51
|
adantr |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> a e. A ) |
53 |
21
|
subrgmcl |
|- ( ( A e. ( SubRing ` R ) /\ x e. A /\ a e. A ) -> ( x ( .r ` R ) a ) e. A ) |
54 |
45 49 52 53
|
syl3anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( x ( .r ` R ) a ) e. A ) |
55 |
4
|
a1i |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) -> ( I i^i A ) C_ A ) |
56 |
55
|
sselda |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> b e. A ) |
57 |
19
|
subrgacl |
|- ( ( A e. ( SubRing ` R ) /\ ( x ( .r ` R ) a ) e. A /\ b e. A ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. A ) |
58 |
45 54 56 57
|
syl3anc |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. A ) |
59 |
44 58
|
elind |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` R ) a ) ( +g ` R ) b ) e. ( I i^i A ) ) |
60 |
26 59
|
eqeltrrd |
|- ( ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ a e. ( I i^i A ) ) /\ b e. ( I i^i A ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
61 |
60
|
anasss |
|- ( ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) /\ ( a e. ( I i^i A ) /\ b e. ( I i^i A ) ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
62 |
61
|
ralrimivva |
|- ( ( ( A e. ( SubRing ` R ) /\ I e. U ) /\ x e. ( Base ` S ) ) -> A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
63 |
62
|
ralrimiva |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> A. x e. ( Base ` S ) A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) |
64 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
65 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
66 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
67 |
3 64 65 66
|
islidl |
|- ( ( I i^i A ) e. V <-> ( ( I i^i A ) C_ ( Base ` S ) /\ ( I i^i A ) =/= (/) /\ A. x e. ( Base ` S ) A. a e. ( I i^i A ) A. b e. ( I i^i A ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( I i^i A ) ) ) |
68 |
7 18 63 67
|
syl3anbrc |
|- ( ( A e. ( SubRing ` R ) /\ I e. U ) -> ( I i^i A ) e. V ) |