| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmimaidl.b |
|- B = ( Base ` S ) |
| 2 |
|
rhmimaidl.t |
|- T = ( LIdeal ` R ) |
| 3 |
|
rhmimaidl.u |
|- U = ( LIdeal ` S ) |
| 4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 5 |
4 1
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> B ) |
| 6 |
|
fimass |
|- ( F : ( Base ` R ) --> B -> ( F " I ) C_ B ) |
| 7 |
5 6
|
syl |
|- ( F e. ( R RingHom S ) -> ( F " I ) C_ B ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) C_ B ) |
| 9 |
5
|
ffnd |
|- ( F e. ( R RingHom S ) -> F Fn ( Base ` R ) ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> F Fn ( Base ` R ) ) |
| 11 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> R e. Ring ) |
| 13 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 14 |
4 13
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 15 |
12 14
|
syl |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 16 |
|
simpr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> I e. T ) |
| 17 |
2 13
|
lidl0cl |
|- ( ( R e. Ring /\ I e. T ) -> ( 0g ` R ) e. I ) |
| 18 |
12 16 17
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( 0g ` R ) e. I ) |
| 19 |
10 15 18
|
fnfvimad |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F ` ( 0g ` R ) ) e. ( F " I ) ) |
| 20 |
19
|
ne0d |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) =/= (/) ) |
| 21 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
| 22 |
21
|
ad4antr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> F e. ( R GrpHom S ) ) |
| 23 |
11
|
ad4antr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> R e. Ring ) |
| 24 |
|
simpr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> z e. ( Base ` R ) ) |
| 25 |
4 2
|
lidlss |
|- ( I e. T -> I C_ ( Base ` R ) ) |
| 26 |
25
|
ad4antlr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> I C_ ( Base ` R ) ) |
| 27 |
|
simplr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> i e. I ) |
| 28 |
26 27
|
sseldd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> i e. ( Base ` R ) ) |
| 29 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 30 |
4 29
|
ringcl |
|- ( ( R e. Ring /\ z e. ( Base ` R ) /\ i e. ( Base ` R ) ) -> ( z ( .r ` R ) i ) e. ( Base ` R ) ) |
| 31 |
23 24 28 30
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( z ( .r ` R ) i ) e. ( Base ` R ) ) |
| 32 |
|
simpllr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> j e. I ) |
| 33 |
26 32
|
sseldd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> j e. ( Base ` R ) ) |
| 34 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 35 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 36 |
4 34 35
|
ghmlin |
|- ( ( F e. ( R GrpHom S ) /\ ( z ( .r ` R ) i ) e. ( Base ` R ) /\ j e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 37 |
22 31 33 36
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 38 |
|
simp-4l |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> F e. ( R RingHom S ) ) |
| 39 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 40 |
4 29 39
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ z e. ( Base ` R ) /\ i e. ( Base ` R ) ) -> ( F ` ( z ( .r ` R ) i ) ) = ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ) |
| 41 |
38 24 28 40
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( z ( .r ` R ) i ) ) = ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ) |
| 42 |
41
|
oveq1d |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 43 |
37 42
|
eqtrd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 44 |
43
|
adantl4r |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 45 |
44
|
adantl3r |
|- ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 46 |
45
|
adantl3r |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 47 |
46
|
adantl3r |
|- ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 48 |
47
|
adantllr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 49 |
48
|
ad4ant13 |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
| 50 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` z ) = x ) |
| 51 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` i ) = a ) |
| 52 |
50 51
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( F ` z ) ( .r ` S ) ( F ` i ) ) = ( x ( .r ` S ) a ) ) |
| 53 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` j ) = b ) |
| 54 |
52 53
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
| 55 |
49 54
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
| 56 |
10
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> F Fn ( Base ` R ) ) |
| 57 |
16 25
|
syl |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> I C_ ( Base ` R ) ) |
| 58 |
57
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> I C_ ( Base ` R ) ) |
| 59 |
16
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> I e. T ) |
| 60 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> z e. ( Base ` R ) ) |
| 61 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> i e. I ) |
| 62 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> j e. I ) |
| 63 |
2 4 34 29
|
islidl |
|- ( I e. T <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. z e. ( Base ` R ) A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) ) |
| 64 |
63
|
simp3bi |
|- ( I e. T -> A. z e. ( Base ` R ) A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
| 65 |
64
|
r19.21bi |
|- ( ( I e. T /\ z e. ( Base ` R ) ) -> A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
| 66 |
65
|
r19.21bi |
|- ( ( ( I e. T /\ z e. ( Base ` R ) ) /\ i e. I ) -> A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
| 67 |
66
|
r19.21bi |
|- ( ( ( ( I e. T /\ z e. ( Base ` R ) ) /\ i e. I ) /\ j e. I ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
| 68 |
59 60 61 62 67
|
syl1111anc |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
| 69 |
58 68
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. ( Base ` R ) ) |
| 70 |
56 69 68
|
fnfvimad |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) e. ( F " I ) ) |
| 71 |
55 70
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 72 |
5
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> F : ( Base ` R ) --> B ) |
| 73 |
72
|
ffund |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> Fun F ) |
| 74 |
73
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> Fun F ) |
| 75 |
5
|
fdmd |
|- ( F e. ( R RingHom S ) -> dom F = ( Base ` R ) ) |
| 76 |
75
|
imaeq2d |
|- ( F e. ( R RingHom S ) -> ( F " dom F ) = ( F " ( Base ` R ) ) ) |
| 77 |
|
imadmrn |
|- ( F " dom F ) = ran F |
| 78 |
76 77
|
eqtr3di |
|- ( F e. ( R RingHom S ) -> ( F " ( Base ` R ) ) = ran F ) |
| 79 |
78
|
eqeq1d |
|- ( F e. ( R RingHom S ) -> ( ( F " ( Base ` R ) ) = B <-> ran F = B ) ) |
| 80 |
79
|
biimpar |
|- ( ( F e. ( R RingHom S ) /\ ran F = B ) -> ( F " ( Base ` R ) ) = B ) |
| 81 |
80
|
eleq2d |
|- ( ( F e. ( R RingHom S ) /\ ran F = B ) -> ( x e. ( F " ( Base ` R ) ) <-> x e. B ) ) |
| 82 |
81
|
biimpar |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ x e. B ) -> x e. ( F " ( Base ` R ) ) ) |
| 83 |
82
|
adantlr |
|- ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) -> x e. ( F " ( Base ` R ) ) ) |
| 84 |
83
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> x e. ( F " ( Base ` R ) ) ) |
| 85 |
|
fvelima |
|- ( ( Fun F /\ x e. ( F " ( Base ` R ) ) ) -> E. z e. ( Base ` R ) ( F ` z ) = x ) |
| 86 |
74 84 85
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> E. z e. ( Base ` R ) ( F ` z ) = x ) |
| 87 |
71 86
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 88 |
73
|
ad5antr |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> Fun F ) |
| 89 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> a e. ( F " I ) ) |
| 90 |
|
fvelima |
|- ( ( Fun F /\ a e. ( F " I ) ) -> E. i e. I ( F ` i ) = a ) |
| 91 |
88 89 90
|
syl2anc |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> E. i e. I ( F ` i ) = a ) |
| 92 |
87 91
|
r19.29a |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 93 |
73
|
ad3antrrr |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> Fun F ) |
| 94 |
|
simpr |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> b e. ( F " I ) ) |
| 95 |
|
fvelima |
|- ( ( Fun F /\ b e. ( F " I ) ) -> E. j e. I ( F ` j ) = b ) |
| 96 |
93 94 95
|
syl2anc |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> E. j e. I ( F ` j ) = b ) |
| 97 |
92 96
|
r19.29a |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 98 |
97
|
anasss |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ ( a e. ( F " I ) /\ b e. ( F " I ) ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 99 |
98
|
ralrimivva |
|- ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) -> A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 100 |
99
|
ralrimiva |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> A. x e. B A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
| 101 |
3 1 35 39
|
islidl |
|- ( ( F " I ) e. U <-> ( ( F " I ) C_ B /\ ( F " I ) =/= (/) /\ A. x e. B A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) ) |
| 102 |
8 20 100 101
|
syl3anbrc |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) e. U ) |
| 103 |
102
|
3impa |
|- ( ( F e. ( R RingHom S ) /\ ran F = B /\ I e. T ) -> ( F " I ) e. U ) |