Step |
Hyp |
Ref |
Expression |
1 |
|
rhmimaidl.b |
|- B = ( Base ` S ) |
2 |
|
rhmimaidl.t |
|- T = ( LIdeal ` R ) |
3 |
|
rhmimaidl.u |
|- U = ( LIdeal ` S ) |
4 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
5 |
4 1
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> B ) |
6 |
|
fimass |
|- ( F : ( Base ` R ) --> B -> ( F " I ) C_ B ) |
7 |
5 6
|
syl |
|- ( F e. ( R RingHom S ) -> ( F " I ) C_ B ) |
8 |
7
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) C_ B ) |
9 |
5
|
ffnd |
|- ( F e. ( R RingHom S ) -> F Fn ( Base ` R ) ) |
10 |
9
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> F Fn ( Base ` R ) ) |
11 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
12 |
11
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> R e. Ring ) |
13 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
14 |
4 13
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
15 |
12 14
|
syl |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( 0g ` R ) e. ( Base ` R ) ) |
16 |
|
simpr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> I e. T ) |
17 |
2 13
|
lidl0cl |
|- ( ( R e. Ring /\ I e. T ) -> ( 0g ` R ) e. I ) |
18 |
12 16 17
|
syl2anc |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( 0g ` R ) e. I ) |
19 |
10 15 18
|
fnfvimad |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F ` ( 0g ` R ) ) e. ( F " I ) ) |
20 |
19
|
ne0d |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) =/= (/) ) |
21 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
22 |
21
|
ad4antr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> F e. ( R GrpHom S ) ) |
23 |
11
|
ad4antr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> R e. Ring ) |
24 |
|
simpr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> z e. ( Base ` R ) ) |
25 |
4 2
|
lidlss |
|- ( I e. T -> I C_ ( Base ` R ) ) |
26 |
25
|
ad4antlr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> I C_ ( Base ` R ) ) |
27 |
|
simplr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> i e. I ) |
28 |
26 27
|
sseldd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> i e. ( Base ` R ) ) |
29 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
30 |
4 29
|
ringcl |
|- ( ( R e. Ring /\ z e. ( Base ` R ) /\ i e. ( Base ` R ) ) -> ( z ( .r ` R ) i ) e. ( Base ` R ) ) |
31 |
23 24 28 30
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( z ( .r ` R ) i ) e. ( Base ` R ) ) |
32 |
|
simpllr |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> j e. I ) |
33 |
26 32
|
sseldd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> j e. ( Base ` R ) ) |
34 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
35 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
36 |
4 34 35
|
ghmlin |
|- ( ( F e. ( R GrpHom S ) /\ ( z ( .r ` R ) i ) e. ( Base ` R ) /\ j e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) ) |
37 |
22 31 33 36
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) ) |
38 |
|
simp-4l |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> F e. ( R RingHom S ) ) |
39 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
40 |
4 29 39
|
rhmmul |
|- ( ( F e. ( R RingHom S ) /\ z e. ( Base ` R ) /\ i e. ( Base ` R ) ) -> ( F ` ( z ( .r ` R ) i ) ) = ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ) |
41 |
38 24 28 40
|
syl3anc |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( z ( .r ` R ) i ) ) = ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ) |
42 |
41
|
oveq1d |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( ( F ` ( z ( .r ` R ) i ) ) ( +g ` S ) ( F ` j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
43 |
37 42
|
eqtrd |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
44 |
43
|
adantl4r |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
45 |
44
|
adantl3r |
|- ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
46 |
45
|
adantl3r |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
47 |
46
|
adantl3r |
|- ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
48 |
47
|
adantllr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ z e. ( Base ` R ) ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
49 |
48
|
ad4ant13 |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) ) |
50 |
|
simpr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` z ) = x ) |
51 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` i ) = a ) |
52 |
50 51
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( F ` z ) ( .r ` S ) ( F ` i ) ) = ( x ( .r ` S ) a ) ) |
53 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` j ) = b ) |
54 |
52 53
|
oveq12d |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( ( F ` z ) ( .r ` S ) ( F ` i ) ) ( +g ` S ) ( F ` j ) ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
55 |
49 54
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) = ( ( x ( .r ` S ) a ) ( +g ` S ) b ) ) |
56 |
10
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> F Fn ( Base ` R ) ) |
57 |
16 25
|
syl |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> I C_ ( Base ` R ) ) |
58 |
57
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> I C_ ( Base ` R ) ) |
59 |
16
|
ad9antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> I e. T ) |
60 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> z e. ( Base ` R ) ) |
61 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> i e. I ) |
62 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> j e. I ) |
63 |
2 4 34 29
|
islidl |
|- ( I e. T <-> ( I C_ ( Base ` R ) /\ I =/= (/) /\ A. z e. ( Base ` R ) A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) ) |
64 |
63
|
simp3bi |
|- ( I e. T -> A. z e. ( Base ` R ) A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
65 |
64
|
r19.21bi |
|- ( ( I e. T /\ z e. ( Base ` R ) ) -> A. i e. I A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
66 |
65
|
r19.21bi |
|- ( ( ( I e. T /\ z e. ( Base ` R ) ) /\ i e. I ) -> A. j e. I ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
67 |
66
|
r19.21bi |
|- ( ( ( ( I e. T /\ z e. ( Base ` R ) ) /\ i e. I ) /\ j e. I ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
68 |
59 60 61 62 67
|
syl1111anc |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. I ) |
69 |
58 68
|
sseldd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( z ( .r ` R ) i ) ( +g ` R ) j ) e. ( Base ` R ) ) |
70 |
56 69 68
|
fnfvimad |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( F ` ( ( z ( .r ` R ) i ) ( +g ` R ) j ) ) e. ( F " I ) ) |
71 |
55 70
|
eqeltrrd |
|- ( ( ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) /\ z e. ( Base ` R ) ) /\ ( F ` z ) = x ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
72 |
5
|
ad2antrr |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> F : ( Base ` R ) --> B ) |
73 |
72
|
ffund |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> Fun F ) |
74 |
73
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> Fun F ) |
75 |
5
|
fdmd |
|- ( F e. ( R RingHom S ) -> dom F = ( Base ` R ) ) |
76 |
75
|
imaeq2d |
|- ( F e. ( R RingHom S ) -> ( F " dom F ) = ( F " ( Base ` R ) ) ) |
77 |
|
imadmrn |
|- ( F " dom F ) = ran F |
78 |
76 77
|
eqtr3di |
|- ( F e. ( R RingHom S ) -> ( F " ( Base ` R ) ) = ran F ) |
79 |
78
|
eqeq1d |
|- ( F e. ( R RingHom S ) -> ( ( F " ( Base ` R ) ) = B <-> ran F = B ) ) |
80 |
79
|
biimpar |
|- ( ( F e. ( R RingHom S ) /\ ran F = B ) -> ( F " ( Base ` R ) ) = B ) |
81 |
80
|
eleq2d |
|- ( ( F e. ( R RingHom S ) /\ ran F = B ) -> ( x e. ( F " ( Base ` R ) ) <-> x e. B ) ) |
82 |
81
|
biimpar |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ x e. B ) -> x e. ( F " ( Base ` R ) ) ) |
83 |
82
|
adantlr |
|- ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) -> x e. ( F " ( Base ` R ) ) ) |
84 |
83
|
ad6antr |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> x e. ( F " ( Base ` R ) ) ) |
85 |
|
fvelima |
|- ( ( Fun F /\ x e. ( F " ( Base ` R ) ) ) -> E. z e. ( Base ` R ) ( F ` z ) = x ) |
86 |
74 84 85
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> E. z e. ( Base ` R ) ( F ` z ) = x ) |
87 |
71 86
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) /\ i e. I ) /\ ( F ` i ) = a ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
88 |
73
|
ad5antr |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> Fun F ) |
89 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> a e. ( F " I ) ) |
90 |
|
fvelima |
|- ( ( Fun F /\ a e. ( F " I ) ) -> E. i e. I ( F ` i ) = a ) |
91 |
88 89 90
|
syl2anc |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> E. i e. I ( F ` i ) = a ) |
92 |
87 91
|
r19.29a |
|- ( ( ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) /\ j e. I ) /\ ( F ` j ) = b ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
93 |
73
|
ad3antrrr |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> Fun F ) |
94 |
|
simpr |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> b e. ( F " I ) ) |
95 |
|
fvelima |
|- ( ( Fun F /\ b e. ( F " I ) ) -> E. j e. I ( F ` j ) = b ) |
96 |
93 94 95
|
syl2anc |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> E. j e. I ( F ` j ) = b ) |
97 |
92 96
|
r19.29a |
|- ( ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ a e. ( F " I ) ) /\ b e. ( F " I ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
98 |
97
|
anasss |
|- ( ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) /\ ( a e. ( F " I ) /\ b e. ( F " I ) ) ) -> ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
99 |
98
|
ralrimivva |
|- ( ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) /\ x e. B ) -> A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
100 |
99
|
ralrimiva |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> A. x e. B A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) |
101 |
3 1 35 39
|
islidl |
|- ( ( F " I ) e. U <-> ( ( F " I ) C_ B /\ ( F " I ) =/= (/) /\ A. x e. B A. a e. ( F " I ) A. b e. ( F " I ) ( ( x ( .r ` S ) a ) ( +g ` S ) b ) e. ( F " I ) ) ) |
102 |
8 20 100 101
|
syl3anbrc |
|- ( ( ( F e. ( R RingHom S ) /\ ran F = B ) /\ I e. T ) -> ( F " I ) e. U ) |
103 |
102
|
3impa |
|- ( ( F e. ( R RingHom S ) /\ ran F = B /\ I e. T ) -> ( F " I ) e. U ) |