| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idlinsubrg.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
idlinsubrg.u |
⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) |
| 3 |
|
idlinsubrg.v |
⊢ 𝑉 = ( LIdeal ‘ 𝑆 ) |
| 4 |
|
inss2 |
⊢ ( 𝐼 ∩ 𝐴 ) ⊆ 𝐴 |
| 5 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 6 |
4 5
|
sseqtrid |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐼 ∩ 𝐴 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∩ 𝐴 ) ⊆ ( Base ‘ 𝑆 ) ) |
| 8 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 10 |
2 9
|
lidl0cl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 11 |
8 10
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 12 |
|
subrgsubg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 13 |
|
subgsubm |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) → 𝐴 ∈ ( SubMnd ‘ 𝑅 ) ) |
| 14 |
9
|
subm0cl |
⊢ ( 𝐴 ∈ ( SubMnd ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐴 ) |
| 15 |
12 13 14
|
3syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐴 ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ 𝐴 ) |
| 17 |
11 16
|
elind |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ 𝑅 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 18 |
17
|
ne0d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∩ 𝐴 ) ≠ ∅ ) |
| 19 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 20 |
1 19
|
ressplusg |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( +g ‘ 𝑅 ) = ( +g ‘ 𝑆 ) ) |
| 21 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 22 |
1 21
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 23 |
22
|
oveqd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) = ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ) |
| 24 |
|
eqidd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑏 = 𝑏 ) |
| 25 |
20 23 24
|
oveq123d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ) |
| 26 |
25
|
ad4antr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) = ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ) |
| 27 |
8
|
ad4antr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 28 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐼 ∈ 𝑈 ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 30 |
29
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 31 |
5 30
|
eqsstrrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 33 |
32
|
sselda |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 35 |
|
inss1 |
⊢ ( 𝐼 ∩ 𝐴 ) ⊆ 𝐼 |
| 36 |
35
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐼 ∩ 𝐴 ) ⊆ 𝐼 ) |
| 37 |
36
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑎 ∈ 𝐼 ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑎 ∈ 𝐼 ) |
| 39 |
2 29 21
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑎 ∈ 𝐼 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐼 ) |
| 40 |
27 28 34 38 39
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐼 ) |
| 41 |
35
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐼 ∩ 𝐴 ) ⊆ 𝐼 ) |
| 42 |
41
|
sselda |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑏 ∈ 𝐼 ) |
| 43 |
2 19
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐼 ∧ 𝑏 ∈ 𝐼 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) |
| 44 |
27 28 40 42 43
|
syl22anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐼 ) |
| 45 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) |
| 46 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 47 |
5
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 48 |
46 47
|
eleqtrrd |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ 𝐴 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) |
| 50 |
4
|
a1i |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐼 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 51 |
50
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑎 ∈ 𝐴 ) |
| 53 |
21
|
subrgmcl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐴 ) |
| 54 |
45 49 52 53
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐴 ) |
| 55 |
4
|
a1i |
⊢ ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( 𝐼 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 56 |
55
|
sselda |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → 𝑏 ∈ 𝐴 ) |
| 57 |
19
|
subrgacl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐴 ) |
| 58 |
45 54 56 57
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐴 ) |
| 59 |
44 58
|
elind |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 60 |
26 59
|
eqeltrrd |
⊢ ( ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 61 |
60
|
anasss |
⊢ ( ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ∧ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ) ) → ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 62 |
61
|
ralrimivva |
⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ∀ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ∀ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 63 |
62
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ∀ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) |
| 64 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 65 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 66 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 67 |
3 64 65 66
|
islidl |
⊢ ( ( 𝐼 ∩ 𝐴 ) ∈ 𝑉 ↔ ( ( 𝐼 ∩ 𝐴 ) ⊆ ( Base ‘ 𝑆 ) ∧ ( 𝐼 ∩ 𝐴 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑎 ∈ ( 𝐼 ∩ 𝐴 ) ∀ 𝑏 ∈ ( 𝐼 ∩ 𝐴 ) ( ( 𝑥 ( .r ‘ 𝑆 ) 𝑎 ) ( +g ‘ 𝑆 ) 𝑏 ) ∈ ( 𝐼 ∩ 𝐴 ) ) ) |
| 68 |
7 18 63 67
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∩ 𝐴 ) ∈ 𝑉 ) |