| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidrideqd.l |
|- ( ph -> L e. B ) |
| 2 |
|
lidrideqd.r |
|- ( ph -> R e. B ) |
| 3 |
|
lidrideqd.li |
|- ( ph -> A. x e. B ( L .+ x ) = x ) |
| 4 |
|
lidrideqd.ri |
|- ( ph -> A. x e. B ( x .+ R ) = x ) |
| 5 |
|
lidrideqd.b |
|- B = ( Base ` G ) |
| 6 |
|
lidrideqd.p |
|- .+ = ( +g ` G ) |
| 7 |
|
lidrididd.o |
|- .0. = ( 0g ` G ) |
| 8 |
|
oveq2 |
|- ( x = y -> ( L .+ x ) = ( L .+ y ) ) |
| 9 |
|
id |
|- ( x = y -> x = y ) |
| 10 |
8 9
|
eqeq12d |
|- ( x = y -> ( ( L .+ x ) = x <-> ( L .+ y ) = y ) ) |
| 11 |
10
|
rspcv |
|- ( y e. B -> ( A. x e. B ( L .+ x ) = x -> ( L .+ y ) = y ) ) |
| 12 |
3 11
|
mpan9 |
|- ( ( ph /\ y e. B ) -> ( L .+ y ) = y ) |
| 13 |
1 2 3 4
|
lidrideqd |
|- ( ph -> L = R ) |
| 14 |
|
oveq1 |
|- ( x = y -> ( x .+ R ) = ( y .+ R ) ) |
| 15 |
14 9
|
eqeq12d |
|- ( x = y -> ( ( x .+ R ) = x <-> ( y .+ R ) = y ) ) |
| 16 |
15
|
rspcv |
|- ( y e. B -> ( A. x e. B ( x .+ R ) = x -> ( y .+ R ) = y ) ) |
| 17 |
|
oveq2 |
|- ( L = R -> ( y .+ L ) = ( y .+ R ) ) |
| 18 |
17
|
adantl |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = ( y .+ R ) ) |
| 19 |
|
simpl |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ R ) = y ) |
| 20 |
18 19
|
eqtrd |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = y ) |
| 21 |
20
|
ex |
|- ( ( y .+ R ) = y -> ( L = R -> ( y .+ L ) = y ) ) |
| 22 |
16 21
|
syl6com |
|- ( A. x e. B ( x .+ R ) = x -> ( y e. B -> ( L = R -> ( y .+ L ) = y ) ) ) |
| 23 |
22
|
com23 |
|- ( A. x e. B ( x .+ R ) = x -> ( L = R -> ( y e. B -> ( y .+ L ) = y ) ) ) |
| 24 |
4 13 23
|
sylc |
|- ( ph -> ( y e. B -> ( y .+ L ) = y ) ) |
| 25 |
24
|
imp |
|- ( ( ph /\ y e. B ) -> ( y .+ L ) = y ) |
| 26 |
5 7 6 1 12 25
|
ismgmid2 |
|- ( ph -> L = .0. ) |