| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcflf.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 2 |  | limcflf.a |  |-  ( ph -> A C_ CC ) | 
						
							| 3 |  | limcflf.b |  |-  ( ph -> B e. ( ( limPt ` K ) ` A ) ) | 
						
							| 4 |  | limcflf.k |  |-  K = ( TopOpen ` CCfld ) | 
						
							| 5 | 4 | cnfldhaus |  |-  K e. Haus | 
						
							| 6 |  | eqid |  |-  ( A \ { B } ) = ( A \ { B } ) | 
						
							| 7 |  | eqid |  |-  ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) = ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) | 
						
							| 8 | 1 2 3 4 6 7 | limcflflem |  |-  ( ph -> ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) ) | 
						
							| 9 |  | difss |  |-  ( A \ { B } ) C_ A | 
						
							| 10 |  | fssres |  |-  ( ( F : A --> CC /\ ( A \ { B } ) C_ A ) -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) | 
						
							| 11 | 1 9 10 | sylancl |  |-  ( ph -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) | 
						
							| 12 | 4 | cnfldtopon |  |-  K e. ( TopOn ` CC ) | 
						
							| 13 | 12 | toponunii |  |-  CC = U. K | 
						
							| 14 | 13 | hausflf |  |-  ( ( K e. Haus /\ ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) /\ ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) | 
						
							| 15 | 5 8 11 14 | mp3an2i |  |-  ( ph -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) | 
						
							| 16 | 1 2 3 4 6 7 | limcflf |  |-  ( ph -> ( F limCC B ) = ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) | 
						
							| 18 | 17 | mobidv |  |-  ( ph -> ( E* x x e. ( F limCC B ) <-> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) | 
						
							| 19 | 15 18 | mpbird |  |-  ( ph -> E* x x e. ( F limCC B ) ) |