| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcflf.f |
|- ( ph -> F : A --> CC ) |
| 2 |
|
limcflf.a |
|- ( ph -> A C_ CC ) |
| 3 |
|
limcflf.b |
|- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
| 4 |
|
limcflf.k |
|- K = ( TopOpen ` CCfld ) |
| 5 |
|
limcflf.c |
|- C = ( A \ { B } ) |
| 6 |
|
limcflf.l |
|- L = ( ( ( nei ` K ) ` { B } ) |`t C ) |
| 7 |
|
vex |
|- t e. _V |
| 8 |
7
|
inex1 |
|- ( t i^i C ) e. _V |
| 9 |
8
|
rgenw |
|- A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V |
| 10 |
|
eqid |
|- ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) = ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) |
| 11 |
|
imaeq2 |
|- ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( ( F |` C ) " ( t i^i C ) ) ) |
| 12 |
|
inss2 |
|- ( t i^i C ) C_ C |
| 13 |
|
resima2 |
|- ( ( t i^i C ) C_ C -> ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) |
| 15 |
11 14
|
eqtrdi |
|- ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( F " ( t i^i C ) ) ) |
| 16 |
15
|
sseq1d |
|- ( s = ( t i^i C ) -> ( ( ( F |` C ) " s ) C_ u <-> ( F " ( t i^i C ) ) C_ u ) ) |
| 17 |
10 16
|
rexrnmptw |
|- ( A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 18 |
9 17
|
mp1i |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 19 |
|
fvex |
|- ( ( nei ` K ) ` { B } ) e. _V |
| 20 |
|
difss |
|- ( A \ { B } ) C_ A |
| 21 |
5 20
|
eqsstri |
|- C C_ A |
| 22 |
21 2
|
sstrid |
|- ( ph -> C C_ CC ) |
| 23 |
|
cnex |
|- CC e. _V |
| 24 |
23
|
ssex |
|- ( C C_ CC -> C e. _V ) |
| 25 |
22 24
|
syl |
|- ( ph -> C e. _V ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> C e. _V ) |
| 27 |
|
restval |
|- ( ( ( ( nei ` K ) ` { B } ) e. _V /\ C e. _V ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
| 28 |
19 26 27
|
sylancr |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
| 29 |
6 28
|
eqtrid |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> L = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) |
| 30 |
29
|
rexeqdv |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. L ( ( F |` C ) " s ) C_ u <-> E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u ) ) |
| 31 |
4
|
cnfldtop |
|- K e. Top |
| 32 |
|
opnneip |
|- ( ( K e. Top /\ w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) |
| 33 |
31 32
|
mp3an1 |
|- ( ( w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) |
| 34 |
|
id |
|- ( t = w -> t = w ) |
| 35 |
5
|
a1i |
|- ( t = w -> C = ( A \ { B } ) ) |
| 36 |
34 35
|
ineq12d |
|- ( t = w -> ( t i^i C ) = ( w i^i ( A \ { B } ) ) ) |
| 37 |
36
|
imaeq2d |
|- ( t = w -> ( F " ( t i^i C ) ) = ( F " ( w i^i ( A \ { B } ) ) ) ) |
| 38 |
37
|
sseq1d |
|- ( t = w -> ( ( F " ( t i^i C ) ) C_ u <-> ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 39 |
38
|
rspcev |
|- ( ( w e. ( ( nei ` K ) ` { B } ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 40 |
33 39
|
sylan |
|- ( ( ( w e. K /\ B e. w ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 41 |
40
|
anasss |
|- ( ( w e. K /\ ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 42 |
41
|
rexlimiva |
|- ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) |
| 43 |
|
simprl |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t e. ( ( nei ` K ) ` { B } ) ) |
| 44 |
4
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
| 45 |
44
|
toponunii |
|- CC = U. K |
| 46 |
45
|
neii1 |
|- ( ( K e. Top /\ t e. ( ( nei ` K ) ` { B } ) ) -> t C_ CC ) |
| 47 |
31 43 46
|
sylancr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t C_ CC ) |
| 48 |
45
|
ntropn |
|- ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) e. K ) |
| 49 |
31 47 48
|
sylancr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) e. K ) |
| 50 |
45
|
lpss |
|- ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 51 |
31 2 50
|
sylancr |
|- ( ph -> ( ( limPt ` K ) ` A ) C_ CC ) |
| 52 |
51 3
|
sseldd |
|- ( ph -> B e. CC ) |
| 53 |
52
|
snssd |
|- ( ph -> { B } C_ CC ) |
| 54 |
53
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ CC ) |
| 55 |
45
|
neiint |
|- ( ( K e. Top /\ { B } C_ CC /\ t C_ CC ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 56 |
31 54 47 55
|
mp3an2i |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 57 |
43 56
|
mpbid |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ ( ( int ` K ) ` t ) ) |
| 58 |
52
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. CC ) |
| 59 |
|
snssg |
|- ( B e. CC -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 60 |
58 59
|
syl |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) |
| 61 |
57 60
|
mpbird |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. ( ( int ` K ) ` t ) ) |
| 62 |
45
|
ntrss2 |
|- ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) C_ t ) |
| 63 |
31 47 62
|
sylancr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) C_ t ) |
| 64 |
|
ssrin |
|- ( ( ( int ` K ) ` t ) C_ t -> ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) ) |
| 65 |
|
imass2 |
|- ( ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) |
| 66 |
63 64 65
|
3syl |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) |
| 67 |
|
simprr |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( t i^i C ) ) C_ u ) |
| 68 |
66 67
|
sstrd |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) |
| 69 |
|
eleq2 |
|- ( w = ( ( int ` K ) ` t ) -> ( B e. w <-> B e. ( ( int ` K ) ` t ) ) ) |
| 70 |
5
|
ineq2i |
|- ( w i^i C ) = ( w i^i ( A \ { B } ) ) |
| 71 |
|
ineq1 |
|- ( w = ( ( int ` K ) ` t ) -> ( w i^i C ) = ( ( ( int ` K ) ` t ) i^i C ) ) |
| 72 |
70 71
|
eqtr3id |
|- ( w = ( ( int ` K ) ` t ) -> ( w i^i ( A \ { B } ) ) = ( ( ( int ` K ) ` t ) i^i C ) ) |
| 73 |
72
|
imaeq2d |
|- ( w = ( ( int ` K ) ` t ) -> ( F " ( w i^i ( A \ { B } ) ) ) = ( F " ( ( ( int ` K ) ` t ) i^i C ) ) ) |
| 74 |
73
|
sseq1d |
|- ( w = ( ( int ` K ) ` t ) -> ( ( F " ( w i^i ( A \ { B } ) ) ) C_ u <-> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) |
| 75 |
69 74
|
anbi12d |
|- ( w = ( ( int ` K ) ` t ) -> ( ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) ) |
| 76 |
75
|
rspcev |
|- ( ( ( ( int ` K ) ` t ) e. K /\ ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 77 |
49 61 68 76
|
syl12anc |
|- ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) |
| 78 |
77
|
rexlimdvaa |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) |
| 79 |
42 78
|
impbid2 |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) |
| 80 |
18 30 79
|
3bitr4rd |
|- ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) |
| 81 |
80
|
anassrs |
|- ( ( ( ( ph /\ x e. CC ) /\ u e. K ) /\ x e. u ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) |
| 82 |
81
|
pm5.74da |
|- ( ( ( ph /\ x e. CC ) /\ u e. K ) -> ( ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) |
| 83 |
82
|
ralbidva |
|- ( ( ph /\ x e. CC ) -> ( A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) |
| 84 |
83
|
pm5.32da |
|- ( ph -> ( ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
| 85 |
1 2 52 4
|
ellimc2 |
|- ( ph -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) ) ) |
| 86 |
1 2 3 4 5 6
|
limcflflem |
|- ( ph -> L e. ( Fil ` C ) ) |
| 87 |
|
fssres |
|- ( ( F : A --> CC /\ C C_ A ) -> ( F |` C ) : C --> CC ) |
| 88 |
1 21 87
|
sylancl |
|- ( ph -> ( F |` C ) : C --> CC ) |
| 89 |
|
isflf |
|- ( ( K e. ( TopOn ` CC ) /\ L e. ( Fil ` C ) /\ ( F |` C ) : C --> CC ) -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
| 90 |
44 86 88 89
|
mp3an2i |
|- ( ph -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) |
| 91 |
84 85 90
|
3bitr4d |
|- ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf L ) ` ( F |` C ) ) ) ) |
| 92 |
91
|
eqrdv |
|- ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) ) |