| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limensuci.1 |
|- Lim A |
| 2 |
1
|
limenpsi |
|- ( A e. V -> A ~~ ( A \ { (/) } ) ) |
| 3 |
2
|
ensymd |
|- ( A e. V -> ( A \ { (/) } ) ~~ A ) |
| 4 |
|
0ex |
|- (/) e. _V |
| 5 |
|
en2sn |
|- ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } ) |
| 6 |
4 5
|
mpan |
|- ( A e. V -> { (/) } ~~ { A } ) |
| 7 |
|
disjdifr |
|- ( ( A \ { (/) } ) i^i { (/) } ) = (/) |
| 8 |
|
limord |
|- ( Lim A -> Ord A ) |
| 9 |
1 8
|
ax-mp |
|- Ord A |
| 10 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
| 11 |
9 10
|
ax-mp |
|- -. A e. A |
| 12 |
|
disjsn |
|- ( ( A i^i { A } ) = (/) <-> -. A e. A ) |
| 13 |
11 12
|
mpbir |
|- ( A i^i { A } ) = (/) |
| 14 |
|
unen |
|- ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
| 15 |
7 13 14
|
mpanr12 |
|- ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
| 16 |
3 6 15
|
syl2anc |
|- ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
| 17 |
|
0ellim |
|- ( Lim A -> (/) e. A ) |
| 18 |
1 17
|
ax-mp |
|- (/) e. A |
| 19 |
4
|
snss |
|- ( (/) e. A <-> { (/) } C_ A ) |
| 20 |
18 19
|
mpbi |
|- { (/) } C_ A |
| 21 |
|
undif |
|- ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A ) |
| 22 |
20 21
|
mpbi |
|- ( { (/) } u. ( A \ { (/) } ) ) = A |
| 23 |
|
uncom |
|- ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } ) |
| 24 |
22 23
|
eqtr3i |
|- A = ( ( A \ { (/) } ) u. { (/) } ) |
| 25 |
|
df-suc |
|- suc A = ( A u. { A } ) |
| 26 |
16 24 25
|
3brtr4g |
|- ( A e. V -> A ~~ suc A ) |