Metamath Proof Explorer


Theorem limensuci

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Hypothesis limensuci.1
|- Lim A
Assertion limensuci
|- ( A e. V -> A ~~ suc A )

Proof

Step Hyp Ref Expression
1 limensuci.1
 |-  Lim A
2 1 limenpsi
 |-  ( A e. V -> A ~~ ( A \ { (/) } ) )
3 2 ensymd
 |-  ( A e. V -> ( A \ { (/) } ) ~~ A )
4 0ex
 |-  (/) e. _V
5 en2sn
 |-  ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } )
6 4 5 mpan
 |-  ( A e. V -> { (/) } ~~ { A } )
7 disjdifr
 |-  ( ( A \ { (/) } ) i^i { (/) } ) = (/)
8 limord
 |-  ( Lim A -> Ord A )
9 1 8 ax-mp
 |-  Ord A
10 ordirr
 |-  ( Ord A -> -. A e. A )
11 9 10 ax-mp
 |-  -. A e. A
12 disjsn
 |-  ( ( A i^i { A } ) = (/) <-> -. A e. A )
13 11 12 mpbir
 |-  ( A i^i { A } ) = (/)
14 unen
 |-  ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
15 7 13 14 mpanr12
 |-  ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
16 3 6 15 syl2anc
 |-  ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
17 0ellim
 |-  ( Lim A -> (/) e. A )
18 1 17 ax-mp
 |-  (/) e. A
19 4 snss
 |-  ( (/) e. A <-> { (/) } C_ A )
20 18 19 mpbi
 |-  { (/) } C_ A
21 undif
 |-  ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A )
22 20 21 mpbi
 |-  ( { (/) } u. ( A \ { (/) } ) ) = A
23 uncom
 |-  ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } )
24 22 23 eqtr3i
 |-  A = ( ( A \ { (/) } ) u. { (/) } )
25 df-suc
 |-  suc A = ( A u. { A } )
26 16 24 25 3brtr4g
 |-  ( A e. V -> A ~~ suc A )